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1 1

1.1 1.1 Fluctuations in a spin system easy

Consider an ideal system of 5 spins in the absence of an external magnetic field. Suppose that
one took a movie of this spin system in equilibrium. What fraction of the movie frames would show

n spins pointing up? Consider all the possibilities n = 0, 1, 2, 3, 4, and 5.

Solution



n 0 1 2 3 4 5
p 1/32 5/32 () ()" =5 5/16 5/32 1/32

1.2 2.3 Tossing of dice easy

Assume that each face of a die is equally likely to land uppermost. Consider a game which

involves the tossing of 5 such dice. Find the probability that the number ”6” appears uppermost

(a) in exactly one die,

151 3125
°66*  TTT6
(b) in at least one die,
0b® 4651
1 54F -
65 7776
(c) in exactly two dice.
51 x5 1250
o AR i
6° 7776
1.3 2.5 The random walk problem iy An:easy

A man starts out from a lamppost in the middle of a street, taking steps of equal length [. The
probability is p that any one of his steps is to the right, and ¢ = 1 — p that it is to the left. The man
is so drunk that his behavior at any step shows no traces of memory of what he did at preceding
steps. His steps are thus statistically independent. Suppose that the man has taken NV steps.

(a) What is the probability P(n) that n of these steps are to the right and the remaining
n’ = (N — n) steps are to the left?

(b) What is the probability P’(m) that the displacement of the man from the lamppost is equal

to ml, where m = n — n’ is an integer?

SOLUTION
TG I A

(a) Calculate probability P(n) of n to the right AR e B e S

P = (




(b) Calculate probability P’'(m) of net m to left fCA

m+ N
2

P =P () =] (i o™ 0=

m=n—-n—->n=m+n"=m+N—-n—-n=

1.4 2.14 Direct calculation of m and (An)? normal

Consider an ideal system of N identical spins The number n of magnetic moments which point

in the up direction can then be in the form
n=up+uy+---+uy (i)

when u; = 1 if the ith magnetic moment points up and u; = 0 if its points down. Use the expression

(i) and the fact that the spins are statistically independent to establish the following results.

(a) Prove m = Nu.

Proof
N
n = Z Uj
j=1
N N
n]=> u;=> u=|NuM
7j=1 7=1
(b) Prove (An)2 = N(Au)2.
Proof
N
An = Z Au]'
j=1
N N
(An)? = (Z Aui> X ZA’M]
i=1 j=1
N N N
= Z Au? + Z Z Au;Aug;
=1 J=1i=1j#1
[~ N N
(An)2 =K ZAU? +Z Z AujAui
=1 j=1i=1,j#i
[N N n
=E Z Au? = Z Au?
=1 j=1




Ao SARD SRR AujAui] 5 A (Bt §), H—ANERA SN Ay (Y o, Awg), WIH]
I Zz 1,j#i Au; =0
55—t
(An)? = Z u— Nu)?
= E(()_u)?) + E((Nu)*) 2Nuz

=B w+ Y uju) + N%a? — 2N
J#i
=E()_uf) - N*@®> = N(u? — @) = N(Au)?

(c) Suppose that a magnetic moment has probability p of pointing up and probability
=1 —p of pointing down. Find u© and (Au)? 4

SOLUTION

u=px1l4+gx0=p
(Au)? = p(1 —p)*> +q(0 —p)* = p(1 —p) = pq

(d) Calculate 7o and (An)? and show that your results agree with the relations (66) and

(67) found in the text by a less direct method. KA
m=N({p—q)=N(2p-1) (61)
(Am)? = 4Npq (62)
1
= §(N +m) (65)

Using the result (61) for m,we then obtain
_ 1 1
n= §(N+m) = §N(1+p—q)

or n=1(N+m).
n=Np (66)

since ¢ = 1 — p. Furthermore, we obtain from (65) the relation

1 1 1
Anzn—ﬁ:§(N+m)—§(N—|—m):§[m—m]

E N WO B R



or An = 1Am Hence (An)? = 1(Am)? and (62) implies that

(An)* = Npq (67)
SOLUTION
n=Nu=Np
(An)? = N(Au)?2 = Npq
1.5 2.15 Density fluctuations in a gas easy

Consider an ideal gas of N molecules which is in equilibrium within a container of volume
Vo. Denote by n the number of molecules located within any subvolume V' of this container. The
probability p that a given molecule is located within this subvolume V' is then given by p = V /Vj.

(a) What is the mean number of molecules located within V'? Express your answer in terms of
N, Vp, and V.

(b) Find the standard deviation An in the number of molecules located within the subvolume
V. Hence calculate %n/ﬁ, expressing your answer in terms of IV, Vj, and V.

(c) What does the answer to part (b) become when V <« V7

(d) What value should the standard deviation An assume when V' — V47 Does the answer to

part (b) agree with this expectation?

SOLUTION

(a) Express mean number of molecules in V' in terms of N, V,, V.

N

N . %

n= Z”(n)p”(l —p)N M =np=|N—
n=0

(b) Find standard deviation An and An/n




(c) Find limit when V <V} ? fRA

Vo an
— — 0
n

i Jlmim K, BT s,

(d) Find An when V — V)7 Does the answer agree with this expectation?

An
1
V—>V0:>K—>1 E—1—>0:> = =0
VN n
We expect it to be 0.
2 2
2.1 2.18 Estimate of error of measurement easy: ¥ 1h

A man attempts to lay off a distance of 50 meters by placing a meter stick end to end 50
times in succession. This procedure is necessarily accompanied by some error. Thus the man cannot
guarantee a distance of precisely one meter between the two chalk marks which he makes each time
he places the meter stick on the ground. He knows, however, that the distance between the two
marks is equally likely to lie anywhere between 99.8 and 100.2 cm, and that it certainly does not lie
outside these limits. After repeating the operation 50 times, the man will indeed have laid off a mean
distance of 50 meters. To estimate his total error, calculate the standard deviation of his measured

distance.

Solution Every time, the length is between 99.8 and 100.2 cm.
The max error is [99.8 — 100| = [100.2 — 100| = 0.2 If randomly choose from the range, we can
1

derive the average of error due to its length being equally alike. € =0, PDF(¢) = 53

0.2 0.2 c 52 0.2
g = Pe)de = | Sde=
c /_0,26 (e)de / 047 02|

o2(e) = / " 2p(o)de = /_ e

—-0.2

o(g) = V5002 = 0.82

i MERE - 0 AR



2.2 2.19 Diffusion o f a molecule in a gas easy

A molecule in a gas is free to move in three dimensions. Let s denote its displacement between
successive collisions with other molecules. Displacements of the molecule between successive collisions
are, to fair approximation,statistically independent. Furthermore, since there is no preferred direction
in space, a molecule is as likely to move in a given direction as in the opposite direction. Thus its
mean displacement s = 0 (i.e., each component of this displacement vanishes on the average so that
sy = sy = 5, — 0 ). The total displacement R of the molecule after IV successive displacements can
then be written as

R=51+sy+s3+ - +sn

where s; denotes the ith displacement of the molecule. Use reasoning similar to that of Sec. 2.5 to

answer the following questions:

2.5 Calculation of Mean Values for a Spin System

(a) What is the mean displacement R of the molecule after N displacements?

Solution
R=)5=) (05-1+05-(-1)) =[0]

(b) What is the standard deviation AR = (R — R)? of this displacement after N colli-
sions? In particular, what is AR if the magnitude of each displacement s has the

same length [ 7

Solution

AR =Y F -3

2
=2
I
5 =

If each displacement s has the length [

i MfETE - FAREZE
AT HMEE

2.3 3.1 Simple example of thermal interaction easy

Consider the system of spins described in Table 3.3. Suppose that, when the systems A and A
” are initially separated from each other, measurements show the total magnetic moment of A to be
—3u and the total magnetic moment of A’ to be +4u The systems are now placed in thermal contact
with each other and are allowed to exchange energy until the final equilibrium situation has been

reached.



Table 3.3 Systematic enumeration of all the
states, labeled by some index r, which are ac-
cessible to the system A* when its total energy
in a magnetic field B is equal to —3p0B. The
system A* consists of a subsystem A with three
spins 4, each having magnetic moment po,
and a subsystem A’ with two spins %, each
having magnetic moment 2.

Under these conditions calculate:

(a) The probability P(M) that the total magnetic moment of A assumes any one of its possible

values M.

(b) The mean value M of the total magnetic moment of A.

(c) Suppose that the systems are now again separated so that they are no longer free to exchange

energy with each other. What are the values of P(M) and M of the system A after this separation?

SOLUTION
o system A: —3u 3
o system A’ : +4p 2
equilibrium +p
(a) Express P(M)
A ——— —++4 +—+ ++— —F++ +—+ ++-
L e e S
1 1
P(MA:_glu):g ) =5
GG+ 7
(L)) _6
P(M4 = = 2/\ _ Z
(Ma = +u) - -
A -3u +pup
P 1/7 6/7
(b) Calculate M
1 6 |3
M = ZMjP(MJ) = (—3N)? THE = H




(c) Calculate M after seperation

Seperate energy is M = nM = 3 X %u = %
1
P(Ma = —3p) = 7
6
P(My = +1) = 2
— |3
M =2
7M

same as before

fi RPEEEERL B T AR B, BAME LSS0 BB (Postulate of equal a priori probabilities
SIS E AR AR DAL

2.4 4 normal: $2FEiYY

The probability W (n) that an event characterized by a probability p occurs n times in N trials

was shown to be given by the binomial distribution

W) = 1 (1)

n(N — n)

Consider a situation where the probability p is small (p < 1) and where one is interested in the
case n < N. (Note that if N is large, W(n) becomes very small if n — N because of the smallness
of the factor p™ when p < 1. Hence W(n) is indeed only appreciable when n < N . )Several
approximations can then be made to reduce (1) to simpler form.
(a) Using the result In(1 — p) ~ —p, show that (1 — p)V " x~ ¢~ Vp,
Proof

r— 1l lnr~z—-1
l—-p—=>1lnl—-p=l—-p—-1=—p

1—p)N "= o(N=m)In(1-p) o ((N—n)(~p) neN N m

- ZHANEG W e EEATUREI R RO B B Ry

(b) Show that N!/(N —n)!l ~ N"
Proof p<«l,n< N

N" 1

Q

N =N =1 (N = (- 1)

10



(c) Hence show that

(1) reduces to
A"

where A = Np is the mean number of events. The distribution (2) is called the “Poisson distribution”.

Proof
N! N
— ¢ 1 . n
W(n) AN —m” (1-p)
(a) N' n pr @ pnNn Np
nl(N —n)! ~ ol
\:=Np )\7 ) m
n!
2.5 3.3 One spin in contact with a large spin system easy

Generalize the preceding problem by considering the case where the system A’ consists of some
arbitrarily large number N of spins %, each having magnetic moment pg. The system A consists
again of a single spin % with magnetic moment p. Both A and A’ are located in the same magnetic
field B and are placed in contact with each other so that they are free to exchange energy. When
the moment of A points up, n of the moments of A’ point up and the remaining n’ = N — n of the
moments of A’ point down.

(a) When the moment of A points up, find the number of states accessible to the combined
system A+ A’. This is, of course, just the number of ways in which the N spins of A’ can be arranged
so that n of them point up and n’ of them point down.

(b) Suppose now that the moment of A points down. The total energy of the combined system
A+ A’ must, of course, remain unchanged. How many of the moments of A’ now point up, and how
many of them point down? Correspondingly, fnd the number of states accessible to the combined
system A + A’.

(c) Calculate the ratio P_/Py, where P_ is the probability that the moment of A points down
and P, is the probability that it points up. Simplify your result by using the fact that n > 1 and
n’ > 1. Is the ratio P_ /Py larger or smaller than unity if n > n'?

SOLUTION

Solution
o A: N: po; nup,n =N —n down.

e« A: 1l —pg

11



(a) Find number of pointing up

(b) Find accessible states of A+ A’
o When the moment of A points up: £y = —nugB + (N — n)ugB — poB = (N — 2n — 1)myB

o When the moment of A points down: Ey = pugB + n'ugB — ponB = (2n' +1 — N)uoB

counting gives
e A/\—:N—-n—-1
o Al+:n+1

By E'; , we solve that n+1 of A’ point up and (N-n-1) point down the number of states accessible
N!
(n+ 1IN —n—-1)!

to the combined system :

(c) Calculate ratio P_/P,

P_ _ (n]—&\fl)/zN

Py (D)/2Y
N! ,
_ (n+1)(N—n-1)! _ n
n!(]ifvin)! n+l
1
- n

n>n' = % < 1 so it’s smaller (than unity).

fie  AHY TR RGP L AR

g H
Characteristic Features of Macroscopic Systems
&

Basic Probability Concepts

12



2.6 B— EZT R

B (L ERA. MSIMESE) . I . RS (PRand i)
M (EF) ABIRES. BE. T2, Bk (HxE2E)

ARSI
n=Np
o?(n) = Np(1 - p)
o(n) =/ Np(1—p)
on) 1-p1
no p N
T -

£ 2% ensemble: 4] RSAEYHURS T, W AW EW A IRSEES we contemplate an assembly
(or an ensemble, in more customary termi nology) consisting of some very large number J f of
“similar” systems.In principle, J f is imagined to be arbitrarily large . The systems are supposed to
be “similar” in the sense that each system satisfies the same conditions known to be satisfied by the

system A.

3 3

3.1 3.6 Pressure exerted by an ideal gas intricate

Consider a single particle, of mass m, confined within a box of edge lengths L, L,, L.. Suppose
that this particle is in a particular quantum state r specified by particular values of the three quantum

numbers nx,ny,nz. The energy E, of this state is then given by (15).

2h? (ng2  n,2  n2
E= 4+ = 15
2m <Lz2 + L,? + L22> (15)

When the particle is in the particular state r, it exerts on the right wall of the box (i.e., the wall
x = L) some force F, in the x direction. This wall must then exert on the particle a force —F,. (i.e.,
in the —x direction). If the right wall of the box is slowly moved to the right by an amount dLx,
the work performed on the particle in this state is thus —F.dLx and must be equal to the increase

in energy dFE, of the particle in this state. Thus one has

dE, = —F.dL,. (i)

13



The force F; exerted by a particle in the state r is thus related to the energy FE,. of the particle

in this state by
JFE,

~ L. (ii)

Here we have written a partial derivative since the dimensions L, and L. are

F, =

(a) Using (ii) and the expression (15) for the energy, calculate the force I exerted by the particle
on the right wall when the particle is in a state specified by given values of n,,n,, and n..

(b) Suppose that the particle is not isolated, but is one of the many particles which constitute a
gas confined within the container. The particle, being able to interact weakly with the other particles,
can then be in any one of many posforce F' exerted by the particle in terms of m2. For simplicity,
assume that the box is cubic so that L, = L, = L, = L the symmetry of the situation then imthe
particle.

(c) If there are N similar particles in the gas, the mean force exerted by all of them is simply
NF. Hence show that the mean pressure p of the gas (i.e., the mean force exerted by the gas per
unit area of the wall) is simply given by

p=22p (i)
3V
where E is the mean energy of one particle in the gas.
(d) Note that the result (iii) agrees with that derived in (1.21) on the basis of approximate

arguments using classical mechanics.

nek) (1.21)

SOLUTION

(a) Calculate force F' e S

om \ L2 ' L2 L2

y z
p_ OB _ n°h’-oni | «’h’n}
v OL, 2m L3 m L3
(b) Express F by E. fCA

The average force is same on every direction, so F, equals to F}

I mw2h? n2
" m L3

14



Given the variables, with n in every dirction share same average, I get

o
2m L2
P = 7T27i2n79230 _ 7r2712ﬁ72 _ EE
m L3 m L3 |3L

(c) Prove mean pressure relation

F, is force by a single molecular

F > F, LNF, NL 2 - 2N_—
P=S~viL ™ v V 3L 3V
S2
Mean force on Ly L, : NF = %’VTE
— NF 2NE
Pressure: P = L,L. B

fig AE LyL. o BB Ly Jy, HEMH p=F/S K
d) 4

m ~ 2

p= 3n5

£ R 1va,E = 1mEQ
2 2
p= %nva = gnE
2N —
Sy
P=3v
b 42(69) 1T
the average momentum the average number of colli-
p = |2mo gained by the wall | X |sions experienced per unit time
in one molecular collision by a unit area of the wall
Thus p = (2mb)Fy = (Zmo)(}no)

W BRFISmIEYE, Jksh e R R ROX AR R R SRR X R (R R A=
T e RERIA A - SRS - P R ) o
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3.2 3.9 Number of states of a spin system hard

1
2

magnetic feld B. The system is of macroscopic size so that N is of the order of Avogadro’s number.

A system consists of N spins 5, each having magnetic moment pg, and is located in an applied

The energy of the system is then equal to
E=—(n—-n")uB

if n denotes the number of its magnetic moments which point up, and n’ = N —n the number which
point down.

(a) Calculate for this spin system the number of states (E) which lie in a small energy interval
between F and E 4 §FE Here §FE is understood to be large compared to individual spin energies, i.e.,
0E > poB.

(b) Find an explicit expression for In) as a function of E Since both n and n’ are very large,
apply the result Inn! =~ nlnn —n derived in (M.10) to calculate both n! and n’!. Show thus that, to

excellent approximation,
1 1
InQ(E)=NIn(2N) — 5(N —F)In(N-F) - 5(N +EYIn (N + E')

where
FE
poB

(c) Make a rough sketch showing the behavior of Inf2 as a function of E' Note that Q(E) does not

E/

always increase as a function of E. The reason is that a system of spins is anomalous in that it has
not only a lowest possible energy F = —NpugB,but also a highest possible energy £ = NugB. On
the other hand, in all ordinary systems where one does not ignore the kinetic energy of the particles
(as we did in discussing the spins), there is no upper bound on the magnitude of the kinetic energy

of the system.

SOLUTION

use p instead of g

(a) Caculate Q(FE)

n+n =N
E=—n-n)uB=—-(2n—- N)uB
E+d0E =—((n+ An) — (n' + An'))uB

)
An = B
N N! 0E
UE) = (n)An | nl(N —n)!'2uB




R B RRIG 4T, KEEES (B, B+ 0E] SRSk, fimmmikspeensain B () &
PA OB X—/NERM BERAFAERPIRES (An ), An BISENFR OF BRAFUMER 2 2uB, ke 0F 2
BDERIZ DA, XEME TS (0B > poB) SRRESEHERE Ly 2010,

The # of accessible states Sor Cergq E oc ET"N“.""*LA 0 fmmeats uP

Cutn) =

nl m -n“

JLE) = 9(E3§E whee Q(E)= d-‘i’j&g

JUE) = d¢ .dn SE =d@ SE E=-Cn-NHD = A=-E N
dn dt dn @E&J V'S S
dE&:-—%&

Since SE DM we con caladaie dhe # of n values thar will onraspond

T wgeo in e cone E EtSE as ]_S_-f:_ ik

ML
nms e €ach N Value Cyla) accesble siedes .
Then JLEY= N SE
o\ (N-n)| 20,0
K 1 75— RIS
i
(b) Express InQ(FE)
Inn!~nlnn—n
OF
= | — | — —n)! i
InQ(FE)=InN!—1Inn!—In(N —n)! +1n2 B
OF
:NlnN—N—(nlnn—n)—((N—n)ln(N—n)—(N—n))—l—lnﬁ
w
NI N —nlnn— (N —n)In(N — ) + In 22
=Nln nlnn n)ln n n2uB
E——(2n—N)uB = (N—ﬂ) Yv—m)
=—(2n ,u n= B T2

*https://www.youtube.com /watch?v=lizcT1UXeL8
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InQ(FE)

E
:NlnN—nlnn—(N—n)ln(N—n)—i—ln;uB
_ Ay eEwmiveEey vtV B Yyl OE
=NInN 2(N E)ln2(N E")— (N 2(N E"))In(N 2(]\7 E))+ln2uB

1
=|NIn2N — 5(N — EYIn(N — E') — —(N + E')In(N + E')

1
2

i S ARRIDRENE, R ECE TN REA I (B — N, E)

(c) Sketch

UE)

—NM:B ° NM.B E

iR XTheE 0 XK

3.3 4.6 Nuclear magnetic resonance absorption hard

A sample of water is placed in an external magnetic field B. Each proton of the Hy O molecule
has a nuclear spin 1/2 and a small magnetic moment . Since each proton can point either “up”
or down”, it can be in one of two possible states of respective energies. Suppose that one applies a
radio-frequency magnetic field of frequency v which is such that it satisfies the resonance condition
hv = 2ugB, where 2B is the energy difference between these two proton states and h is Planck’ s
constant. Then the radiation field produces transitions between these two states, causing the proton
to go from the “up” state to the “down” state, or vice versa, with equal probability. The net power
absorbed by the protons from the radiation field is then proportional to the difference between the

numbers of protons in the two states.

18



Assume that the protons always remain very close to equilibrium at the absolute temperature
T of the water. How does the absorbed power depend on the temperature T? Use the excellent
approximation based on the fact that g is so small that poB < kT

How does the absorbed power depend on the temperature T? pugB < kT

Solution Known P « |ny —n_| and

e—BuB
eBHB —+ e—ﬁ.“B
ePuB

eﬁﬂB + e—B#B

ny=NP, =N
n.=NP_.=N

B
ny —n_ = Ntanh(SpB) = N tanh Z—T

nB<kT uB 1
- kT T
1

P _
X7

REEERF RAS NI, RN B 611/ET Wik, AR fajid

@@@@@

H RRBGAEYHEFRIREE n - NP — 3

3.4 4.12 Quasi-static compression of a gas hard: #uihES

Consider a thermally insulated ideal gas of particles confined within a container of volume V.
The gas is initially at some absolute temperature T. Assume now that the volume of this container
is very slowly reduced by moving a piston to a new position.

Give qualitative answers to the following questions:
SOLUTION V decrease - U increase T increase -energy increase

(a) What happens to the energy levels of each particle?

W =AU
pV =nRT

V decrease so N decrease; Thus, sepearation between levels increase.
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(b) Does the mean energy of a particle increase or decrease?

= % U increase N decrease

increase

(c) Is the work done on the gas in reducing its volume positive or negative?

positive
fid  HGIMERESR, XA S HIED)

(d) Does the mean energy of a particle, measured above its ground state energy, in-

crease or decrease?

increase

fiR  HE4RIEURBERIE, AT RERIIEIG, FUHIHIXT (E48E 0y ) BASREE 2= g

(e) Does the absolute temperature of the gas increase or decrease?

increase

A HEESH PGS
3.5 4.16 Pressure and energy density of any ideal nonrelativistic gas normal

Rederive the result of the preceding problem so as to appreciate its full generality and recognize
the origin of the factor % Consider thus an ideal gas of N monatomic particles enclosed in a box of
edge lengths L, L, and L, . If the particle is nonrelativistic, its energy e is related to its momentum
hK by
(RK)? B

o = %(K3+K§+K§) (i)

where the possible values of K, K, and K, are given by (3.13).

... To make it vanish for x = L;,y = Ly, or z = L., the constants K, K, K, must

satisfy the respective conditions

U =T, K,=n, (3.13)
L,

where each of the numbers n;, n,, and n, can assume any of the positive integral values......
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(a) Use this expression to calculate the force F: exerted by a particle on the right wall of the
container when the particle is in a given state r specifed by n., ny, n..

(b) By simply averaging, derive an expression for the mean force F' in terms of the mean energy
€ of a particle. Use the symmetry requirement that Kifj = ?3 = fg when the gas is in equilibrium.

(c) Hence show that the mean pressure p exerted by the gas is given by

_ 2 .
p= 3 (ii)

where @ is the mean energy per unit volume of the gas.

SOLUTION

(hK)?

2m

(a) Calculate F

(b) Calculate F

h?3K2
2m
h2K C2R*KZ 1 2E

m ° " 3 2m Ky 3L

g =

F:

(c) Prove again

3
I
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Statistical Description of Systems of Particles

AE:W+Q*E:‘*§‘/pdV+Q
MBERCRHUETHERITER , PARER N AR, HEAEREEA R MAPRSI S, — s
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3.6 s S ERZJKT i
o WA QE) REIT ©(E)(FrieR/NTET E MITARE);

o HHE;

o Z43R A macroscopic condition to which a system is known to be subject;

o (A) W DRI E BRI ARER, FTDAIKIE (RS DA S S SRR R Z9) A process
which is such that the initial situation of an ensemble of isolated systems subjected to this

process can(not) be restored by simply imposing a constraint.
o B —ER: AE=W+Q

GeitE: TSI, AR B AR
BRI : POFHFSEL B = 2L IIRAMA R Ba = Bp TR . P RIS B =
R BRI (ROt FE s i aorr) B
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4.1 4.20 Partition function of an entire gas normal: {5

Consider an ideal gas consisting of N monatomic molecules
(a) Write down the expression for the partition function Z of this entire gas. By exploiting the

properties of the exponential function, show that Z can be written in the form
z=2zy (i)
where Zj is the partition function for a single molecule and was already calculated in Sec.4.7.

4.7 Mean Energy of an Ideal Gas 166

ENLEAA T AT PEAIE IS S A A YT, TR R A R R VA
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(b) Use (i) to calculate the mean energy E of the gas by means of the general relation derived
in Prob. 4. 18. Show that the functional form of (i) implies immediately that £ must be simply N
times as large as the mean energy per molecule.

(c) Use (i) to calculate the mean pressure p of the gas by means of the general relation derived
in Prob. 4.19. Show that the functional form of (i) implies again that p must be simply N times as

large as the mean pressure exerted by a single molecule.

SOLUTION

(a) Zz=2z)

IN IN
7 — Z e BEin — Z e BEi ... PEin
. ;
f N f
= Z e BEin .. Ze Ejn, — H Ze—ﬁEjn
J n j

N

Zo=je " 1K
RN LR p P4

:ZéV

RSO
57'('27?,2 2 n2
4=Y Y Y f—zzzexp[ - ()]

= 2o, Zo,20.

Bﬂ2h2n2 n2
Zexp om L2

2m Ls
om\?2 L, [ 3L L
_ (M) Lo 2 — [T x g ba
_<ﬂ> wh Jo Pl (277712) FEATE
L,
ZO b@
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_ e PE; 1
_ B _ ~BE; .
E_ZP]E]_Z?E]_EZ(e )
J J J
1 dePE; 10 e Pk YA
_Z;<_65>__Z op Zop
_ O0nZ @ 9lzy
I A
81HZO
=N
B

91n Zg

fit BEREWBON: HhHE - AR E=0mnZ/0p LHE—

(c) p=Npy
F ZPF Z e_’8€] _aﬁj
f - 7 ~L 2 OL,
1 0 1
_ _ o Be
sz:aLZ( 5 )
C10y,e 1 9z
Bz 0L, B ZOIL
_ 10hlZz P
IB 8L,L 7y7
_ K __l olnZ __l@an
P= 8.~ BSpoL; B ov
__l@anéV
B oV
B laano
B g oV
50:7%615\/20 Nf?o
4.2 4.22 Mean energy of harmonic oscillator normal

A harmonic oscillator has a mass and spring constant which are such that its classical angular
frequency of oscillation is equal to w. In a quantum mechanical description, such an oscillator is

characterized by a set of discrete states having energies F,, given by

E, = (n%—;) hw (i

24
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The quantum number n which labels these states can here assume all the integral values
n=20,1,2,3,--- (ii)

A particular instance of a harmonic oscillator might, for example, be an atom vibrating about
its equilibrium position in a solid. Suppose that such a harmonic oscillator is in thermal equilibrium
with some heat reservoir at the absolute temperature T. To find the mean energy E of this oscillator,
proceed as follows:

(a) First calculate the partition function Z for this oscillator, using the definition (ii) of Prob.

4.18. (To evaluate the sum, note that it is merely a geometric series.)

Z=>Y e Pbr (i)

4.18 Mean energy expressed in terms of partition function

(b) Apply the general relation (i) of Prob. 4.18 to calculate the mean energy of the oscillator.

— olnZz
EF=— a8

4.18 Mean energy expressed in terms of partition function

(c) Make a qualitative sketch showing how the mean energy E depends on the absolute temper-
ature T.

(d) Suppose that the temperature T is very small in the sense that k7 < hw Without any
calculation whatever, using only the energy levels of (i), what can you say about the value of E in
this case? Does the result you obtained in (b) properly approach this limiting case?

(e) Suppose that the temperature T is very high so that k7 > hw . What then is the limiting

value of the mean energy E obtained in (b)? How does it depend on T' ? How does it depend on w?

SOLUTION

To find the mean energy of E, = (n+ 3)iw n €N
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(a) Caculate partition function Z Kt

00 00 . ) 0o A
7 — Ze—ﬁE- _ Ze—ﬁ(]-i-g)hw _ e_iﬁhw Ze—ﬁhw]
J J J

geometric serie e_%ﬁhw 1 _ 1
1 — e—Bhw e%ﬁhw _ eféﬁhw

1
2 sinh @

(b) Caculate mean energy fRA

op 98
hew 1. efhw

17L _
2 w+eﬁhw—1 B

g 97z _ 8(-25?@ —In(1 - eB’W)>

(c) mean energy & temperature

sketch

e =
for KTZZX0 e her >5A E - 4w (é+ P

3\'-4‘]._,7_ ~ xk ooyl L KT\ -
Sor KTDho & A )A)%Jr_,[ E- X (44 &_‘J)-'k_z'—_uu
e*l = d4x

224
I\E
Aw :
R~
: S T
KTyho
(d) kT < hw
hw hw
_ Bhw
I} kT—>oo e — 00 eﬂhw_1_>0
— 1 hw
Ezihw_}—eﬂhw—l
1
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The system may be at its ground state, and its agrees with the limit in part 1.

(e) kT > hw

hw
_ Bhw _
I} T 0 1 — phw
— 1 hw
E:§hw+er3hw—l
1 hw 1 1
~ —h —— = —h -
5 w+ﬁhw 5 w—#—ﬁ

2 (R RE) RERNEA:

E—< mwx> <; >—1kT—|—1kT—kT

kT > hwE = fhw—i—kT kT

4.3 4.29 Dependence of energy on temperature for a spin system noraml: (22

X

The number of states Q(E) of a system of N spins %, each having a magnetic moment pg and

located in a magnetic field B, has been calculated in Prob.3.9.

SOLUTION

N! OE

SUE) = n!(N —n)! 2uB

*3.9 Number of states of a spin system

(a) Use this result and the definition § = (0InQ/OFE) to derive a relation expressing the energy
E of this system as a function of the absolute temperature T' = (k3)~!

(b) Since the total magnetic moment M of this system is simply related to its total energy E,use
the answer to part (a) to find an expression for M as a function of 7" and B. Compare this expression
with the result derived for My in (61) and (59).

B
tanh
i = po tan (kT) (59)
MO = Noji (61)
SOLUTION
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(a) Express E(T)

From 3.9
InQ=NIn2N — %(N — E’) In(N — E’) — %(N—i— E')ln(N —i—E’)
0ln
Bi= OF

_ 8anaE'_ OF' 0 1 ) / 1 / /
- OF' OFE __aEaE/ln N1n2N_§(N_E)IH<N_E)_§(N+E)1H(N+E)

11

= [I(N-E)+1-In(N+E)-1
B2 )+1—In(N+E) —1]
1  N-E 1  N-L

I E

T=—==:
kﬁ k; 111 _}L(?B
N+MfB
2ugB 1
e kT —
= FE=—uyN 0B
e kT +1

IU(]B
=|—poNBtanh | —
1o tan < T )

it HEORSWW, REBERBAZKARHOMAIRR, A 1/kT = 0InQ/0E KEk

(b) M(T,B) (AWN

E=—-nuB
E

M:n,u:—g

2pgB 1
e kT —
=|pnoN 200 B
e kT +1

4.4 5.4 Work done tn an adiabatic process easy: IJj

SOLUTION

P=kV73 +b
p=32V=1 p=8V=4=k=2320b=0

p=32V "3

28



Vi 1 .
W = —/ pdV = —/ 32V 3dV
' 8

1

3 _3 3 1 9
_§><32V 2 8_§><32(1—1)_Z><32
=
4.5 5.14 Thermal interaction between two systems easy: #f2:fih

Consider a system A (e.g., a copper block) and a system B (e.g., a container filled with water)
which initially are in equilibrium at the temperatures T4 and Ty, respectively. In the temperature
range of interest, the volumes of the systems remain essentially unchanged and their respective
heat capacities C'4 and C'p are essentially temperature-independent. The systems are now placed
in thermal contact with each other and one waits until the systems attain their final equilibrium
situation at some temperature 7.

(a) Use the condition of conservation of energy to find the final temperature 7. Express your
answer in terms of Ty, T, C4, and Cp.

(b) Use Eq.(31) to calculate the entropy change ASy4 of A and the entropy AS = AS4+ ASp of

the combined system in going from the initial situation are in thermal equilibrium with each other.

...... If the heat capacity is independent of temperature in the tempera ture range between
Ta and Th, (30) becomes simply

T
Sp— Sy = Cp(InTy, — InT,) = CyIn Ti’ (31)
a

(c) Show explicitly that AS can never be negative, and that it will be zero In (z7') > —z +1).
SOLUTION

Azl

(a) Solve T'(T4,T5,C4,Cp)

Qa+Qp=0
CA(T —Ty)+Cp(T—Tp)=0
(Ca+Cp)T =CuTs+ CpTrg

CaTp+ CgTg
Ca+Cp

T =




(b) Express AS

/

T T T
AS—CIDT CAln—ﬂ—CBlnE

(c) Prove AS >0

1
nzr<z—1 In—->1-=z

fCA

T

T T

AS = C'Aln— —i—CBln—

Tp

Tx Tg
> Cal— 2+ Cp(1 — 7£) = Z(CA(T ~ Ta) + O(T — Tp)) =0
equals when T4 =Tpg
P EE

Thermal Interaction

L_B_alnﬂ
kT~ OF
S:=kInQ
dQ
deT
P.(E,) oc e PFr
p=nkT
- JdlnZ
- %

4.6 EIUTEZIKT iR
M (s, KRegiiteE); EW4 - Bl % Boltzmann [HF: e

S (F R - EEEMR: If two systems are in thermal equilibrium with a third system,

then they must be in thermal equilibrium with each other.)

Heat reservoir #\%: A sufficiently large macroscopic system so that its temperature remains

essentially unchanged in any thermal interaction with other systems.

KT I

monatomic gas molecule: € = %kT,F = %N kT
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oL,

fr:

_ e Ber Oey 1 (efﬁf*ﬁem) 1 (X, 86*/3“)
ST (~o1) - "7l en, T 7 gl

_119Z 10z
 ZBOL, B 0L,

1 1
0 (1 63v> 0 (3lnb + InL, + InL, + InL,)

~BorL, \\"" pr2) " BoL,

1

- oL
__F Nf, N 1
P=%§~1,L.  L,L.AL,
N NkT
- =

PV = NkT

N
D= <V) kT :=nkT

pV =v(Nak)T := vRT v :number of moles

i
5 5
5.1 5.7 Heat absorbed by a system at constant pressure easy: & X

Consider a system, such as a gas or liquid, whose only external parameter is its volume V. If the

volume is kept fixed and an amount of heat () is added to the system, then no work gets done and

Q=AE (i)

YINBAE rev2T
i ZC HEEESOE R
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where AFE denotes the increase in mean enerigy of the system. Suppose, however, that the system
is always maintained at a constant pressure py by being enclosed in a cylinder of the type shown in
Fig. 5.20. Here the pressure pg is always determined by the weight of the piston, but the volume V
of the gas is free to adjust itself. If an amount of heat @) is now added to the system, the relation (i)

is no longer valid. Show that it must be replaced by the relation
Q=AH (ii)

where AH denotes the change in the quantity H = E+ poV of the system. (The quantity H is called
the enthalpy of the system.)

Fig. 5.20 A system contained within a cylin-
der closed by a movable piston.

SOLUTION

V.Q=AE"=S Q= AH
H=F+pV

it B~F1H Conservation of energy

AE=AU=Q+W
V’
Q= AE — —podV = AE—}—poAV
Vo

= AE—{—poAV = A(E-{—ZJQV)

Il
>
B

H EHEW=—pV

5.2 5.22 Energy fluctuations of a system in contact with a heat reservoir hard

Consider an arbitrary system in contact with a heat reservoir at the absolute temperature

T= % Using the canonical distribution, it has already been shown in Prob. 4.18 that E = _8(19%2

7 = Z e BEr (i)
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is the sum over all states of the system.
(a). Obtain an expression for E2 in terms of Z , or preferably In Z.
(b). The dispersion of the energy (AE)2 = (E — E)2 can be written as E2 — E? . (See Prob. 2.8.)

Use this relation and your answer to part (a) to show that

- ?Inz oK

(AE)? o o (ii)

(c). Show thus that the standard deviation AFE of the energy can be expressed quite generally in
terms of the heat capacity C of the system (with external parameters kept fixed) by

AE = T(kC)Y/? (iif)

(d). Suppose that the system under consideration is an ideal monatomic gas consisting of N

molecules. Use the general result (iii) to fnd an explicit expression for (AE/E) in terms of N.

SOLUTION

(a) Express E2(Z)

_ —BE;
_ 2 _ ey 1 —BE; 12
EQ—ZPJ‘EJ'—Z 7 Ej—gze TE;
J J J
— l Z H2e~PE; _ 162 Zj e P
74~ o 7 op2

177
Z 032

Wi % E=02/08 8%k, WNEXk, Sl Sfimgit.

(b) Prove equation

o2 9B 9P B\ Zop

(0 1\NOoZ 1 [(00Z\ ([ 10Z\0ozZ  10°Z
- <85Z> o5tz <8586> a <_Zc‘96> 8 "z
19’2 (9mZ)\?

7o~ (a7 )

- FE = (AE)?

Pz 90mZ 0 <1 az)

_OQIDZ_QOInZ__OiE
- 0B* 9B o3 0B

(AE)?
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(c) Derviation of deviation of energy o(FE)

—\J@BR -5

_ \/_aEaT_ B0 1 \/8E1
oT 93 oT 8B k3 oT k32
<SG =T
B Bk
=|TVkC

B AR, (FRBIMOR TRIGEZORS: (A T 540 &—F B, Fr2IEmfes, A

—ATHA]
o- (%) Jomes _or L
oT op oT OB kT?
oF

o 2
= a3 kCT

(d) Fluctation o/u of ideal gas fCA: BiAS A

E=3kNT TVEC — 2vkC
3Nk:T 3kN

nggkN 2\/143%]&7\7

3kN

98 ¢
E

2l

2
3

W iR BT AR PR n AR AL N (FE At JEREINREE) 7R
SRRLTAL, W 1/2 FoR— IR XAy (B mMR) PV = nRT Stk
p_ F  NFy, g %
S S SAt
N 2mv vAtS 1 2mo

TS At "V S At
2nmu?
v
12nmv2~
Pj:§ V]:>PV:nva2
1
€:§m122:3><§mvj2»
_3PV

2n
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PV =nRT

3
— °RT
£ 3

5.3 6.2 Ideal gas in a gravitational field normal

An ideal gas at the absolute temperature 7" is in equilibrium in the presence of a gravitational
field described by an acceleration g in the downward (or —z ) direction. The mass of each molecule
ism .

(a). Use the canonical distribution in its classical form to find the probability P(r,p)d®rd®p that a
molecule has a position between r and r 4+ dr and a momentum between p and p + dp .

(b). Find (to within a trivial constant of proportionality) the probability P’(v)d3v that a molecule
has a velocity between v and v$+d$v, irrespective of its position in space. Compare this result with
the corresponding probability in the absence of a gravitational feld.

(¢). Find (to within a trivial constant of proportionality) the probability P”(z)dz that a molecule is
located at a height between z and z + dz, irrespective of its velocity or its location in any horizontal

plane.

(a) Find P of r and p

2

E=K+U=2"{mgr,
2m
1

2
P(E) _ Ee—ﬁ(%+mgrz)

2
P(r,p)d’rd’p = CePGatmor=)g3rd®p

fig  AMIEW R EAEREM, C b TS

/// Pded®p=1—C
(b) P'(v)

XA MG R 5, ]

2
([ Pd’r)d’p e Pimddp [ emom=dz
f'P - —5ﬁ 3 O mgr
r,p fffe amd pfO emdr=dz

P(p)d’p =

_ (B g3
_Ce dep
p=mv &p=midv

P(v)dv = ChePzm’ gy
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2
P'(v)dPv o e Prmdiy

br AHERR T
2
P(r,p)d3rd®p o e AEmtmars) P3radp

— mv2
2% P(r,v)dPrddy o e AR Tmme) @3rddy
e Bamv? gmar: P3pddy
d3r

—BLimuv2
ZCle ﬁva

P'(v)d3v
i RSP/ BT PPN

(c) P’ (2)dz

2
P'(2)dz = ///e_ﬁ(ézfrmgrz)d?’pdxdy dz

Y0
= eM9"2d 2 [ . ]

= e P97,

Bt RNMERREAA 0T B -
P(r,p)d’rd®p o efﬁ(%mgrz)dxdydzdzsp

e_ﬁ(%+mgw)d3rd3v

" — —pBmgr.
P (z)dz dedydPp Cae
W HARTB MR TR, KHIRE D
5.4 6.5 Determination of large molecular weights by the ultracentrifuge easy

Consider a macromolecule ( i. e. , a very large molecule with a molecular weight of several
millions) immersed in an incompressible fuid of density p at the absolute temperature 7' . The
volume v occupied by one such molecule can be considered known since the volume occupied by a
mole of macromolecules can be determined by volume measurements on a solution of macromolecules.
A dilute solution of this type is now placed in an ultracentrifuge rotating with a high angular velocity
w . In the frame of reference rotating with the centrifuge, any particle of mass m at rest with respect
to this frame is then acted upon by an outward centrifugal force mw?r, where r denotes the distance
of the particle from the axis of rotation.

(a). What is the net force acting in this frame of reference on a macromolecule of mass m, if the
buoyancy effect of the surrounding fluid is taken into account?
(b). Suppose that equilibrium has been attained in this frame of reference so that the mean number

n(r)dr (per unit volume) of macromolecules located at a distance from the axis of rotation between
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r and r + dr is independent of time. Apply the canonical distribution to find (to within a constant
of proportionality) the number n(r)dr as a function of r.
(c). Measurements of the relative number n(r) of molecules as a function of r can be made by

measuring the absorption of light by the solution. Show how such measurements can be used to

deduce the mass m of a macromolecule

SOLUTION

(a) F

a = w?r, Fg = pav
Foet = Fr+ Fp = mw2r+pav

= mw?r + pvw2r

= |wr(m — pv)

BT SR B (070 TR 4 i PR B T 2R ) -

m*=m — pV

F = m*w?r = w?r(m — pv)

(b) n(r)dr

n(r)dr oc Pdr
1
E=U-= /Fdr = §w2r2(m—pv)
1 1
P= e ::Z?e—ﬁéw%JOn—pw

Pdr = e2@’r*(m=pv)q,.

n(r)dr « ez (m=pv) 4.

or WKL

F = w’r(m — pV)i
F=-VE
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(c) Obtain m

We need to measure n(ry),n(ry) and rqy # ro

zln(gggg)
ﬁwQ(rf —13)
CLAHTRA AR E FIA L, IR, P DARRRRS, 22 p o« 2RISR ARG, &
SETREfRH meo.

D) _ Lpme-pV)et(domd) o pV —
n(ro

5.5 6.14 Calculation of mean values for a molecule in a gas normal: 3% 54

A gas of molecules, each having mass m,is at rest in thermal equilibrium at the absolute tem-
perature 1. Denote the velocity of a molecule by v, its three cartesian components of velocity by
Vg, Uy, and v;, and its speed by v.

Find the following mean values:

(a) Tz (b)v2 (c) v2v, (d) v2vy, (e) (vy + bu,)2, where b is a constant.

(Suggestion: Symmetry arguments and the equipartition theorem should suffice to answer all these

questions without any significant calculation.)

SOLUTION
Maxwell 731 :
Ty = / Clve~38m dy

AREAR, TR

1 — 3
—mv? =E = kT
2 2
1 1
—mv? = —kT
2
— kT
Vp? = —
m

V20, = V20, = @

2, — 027 —
vdvy = v3ty = 0]

(v + buy)? = 02 + b202 + 2bvgv, = v2 + b2

_ kT( e

m
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i Maxwell —AJ7 W54 -
g(U:c>de = / f(V) d*v
(vy) J (vz)
= C/ / e~ (1/2Bm(va2 vy 24v:2) gy, d,
(Uy) (Uz)

— Ce—(l/?)ﬂmvaﬁ dvx /OO /OO 6_(1/2)ﬁm(vy2+vz2) d’Uy d?)z

dhn

Microscopic Theory and Macroscopic Measurements

_(dQ
Cv= <dT>V

T — 0, S—S C—=0

5.6 5 ZJKT )i

—HIA AR Kelvin/Celsuis;

HEERS: ARSERE T, A 2R Z L E system under consideration remains at
all times arbitrarily close to equilibrium.

B BEA BHEDL Y2 Molar specific heat: The heat capacity per mole of the substance under

consideration

6 6

6.1 6.19 Specific heat of anharmonic oscillators normal: Sk

Consider a one-dimensional oscillator (not simple harmonic) described by a position coordinate

x and by a momentum p and whose energy is given by
=2 4t i
¢ m (i)

where the first term on the right is its kinetic energy and the second term is its potential energy.
Here m denotes the mass of the oscillator and b is some constant. Suppose that this oscillator is in
thermal equilibrium with a heat reservoir at a temperature T high enough so that the approximation
of classical mechanics is a good one.

(a) What is the mean kinetic energy of this oscillator?

(b) What is its mean potential energy?
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(c) What is its mean total energy?
(d) Consider an assembly of weakly interacting particles, each vibrating in one dimension so that
its energy is given by (i). What is the specific heat at constant volume per mole of these particles?

(Suggestion: There is no need to evaluate explicitly any integral to answer these questions.)

SOLUTION
(a) Calcualte mean kinetic energy
Inz
€ = — 8n = ln/ 52mdp
0 B kT

B deaet el

. pr kT
om Ty
PRAMGR
a oo
€ = f%ln (/_Ooe_ﬁel dp>
(GXHEA h)

(b) Calculate mean potential energy

€ = ;ﬁan—ln/ b gy

let y = Biw

t= m/ ' g-idy = — 3 <lnﬁ /e_by4dy>

(9
(35 (lnﬂ 4+ln/ —by dy) Blnﬁff

_ 1 _|sT
48 | 4

BT AR R E
O L FUR: beta HOEOEH, $r96 LARTER, AU R I BIRAZ 8%
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(c) Calculate mean total energy

3
€ = € E == —_ T
€E=F¢€ + ¢ 414:
(d) Calculate specific heat
OE 3/4kT 3 3
Vo~ 7 1T
6.2 6.21 Quantum theory of the specific heat of solids normal: %%

To treat the atomic vibrations in a solid by quantum mechanics, use as a simplifying approxi-
mation a model which assumes that each atom of the solid vibrates independently of the other atoms
with the same angular frequency w in each of its three directions. The solid consisting of N atoms
is then equivalent to an assembly of 3N independent one-dimensional oscillators vibrating with the
frequency w. The possible quantum states of every such oscillator have discrete energies given by

€n = (n+ %)hw (i)

where the quantum number n can assume the possible values n =0,1,2,3...
(a) Suppose that the solid is in equilibrium at the absolute temperature 7'. By using the energy
levels (i) and the canonical distribution, proceed as in Prob. 4.22 to calculate the mean energy € of

an oscillator and thus also the total mean energy = N€ of the vibrating atoms in the solid.

—lﬁhw

2

g 7
1 — e Bhw

Solution 4.22 Mean energy of a harmonic oscillator

(b) Using the result of part (a), proceed as in Prob. 5.20 to calculate the molar specific heat ¢y
of the solid.
(c¢) Show that the result of part (b) can be expressed in the form

w2e?

Cy = BRW (ii)

where

hw _©
kKT T

and where © = hw/k is the temperature parameter previously defined in (70).

w =

(iii)
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kT > hw

where w is, by (60), the typical (angular) frequency of oscillation of an atom in the

solid. Equivalently the criterion (69) for the validity of the classical approximation can

be written in the form

7> 0, Where@:%}

is a temperature parameter characteristic of the solid under consideration.

d) Show that, when 7' > O, the result (ii) approaches properly the classical value ¢y = 3R.

(
(e) Show that the expression (ii) for ¢y approaches properly the value zero as T — 0.
(f) Find an approximate expression for the result (ii) in the limit when 7' < ©.

(9)

g) Make a rough sketch of ¢y as a function of the absolute temperature 7'

(h) Apply the criterion (1) to find below what temperature the classical approximation is not

expected to be applicable. Compare your result with the condition (69) for the applicability of the

classical theory of specific heats.

[Using the approximations made in this problem, Einstein first derived the expression (ii) in

1907. Using the novel quantum ideas, he was thus able to inexplicable on the basis of the classical

theory.]

(a)

(b)

SOLUTION
Caculate mean energy & total
0 0 e 2Phw
ej——%an _%lnl_efﬁhw
1 1
=|h
“ (2 o 1)
€ = 3¢

Caculate cy

Nhw +

OE 0 (3 3Nhw \  3Nhw
- (eﬂhw _

V=or " oar\2 efhw 1

3N h2w2 Bhw
(ePhe — 1)2 T2 ©

42

12 k72"

hw Bhw

fRA

fCA



(c) Express cy fRA

oo _ BN PR 3R W
v (eit —1)2 KT?  (eiF — 1)2 KT?
hw o 2w
kT 3R w-e
(e =1
(d) Prove T'> 0O = cy =3R B

©
T'>0=w=—=—0 e’"=14w+o(w)

T
w?e® w? (14w + o(w))
=3R =3R
VT e =12 T T M wt ow) — 12
gt olw]) | g
N w? + o(w?)

(e) Prove T'— 0,cy — 0

2

T—0=w—o00,e ¥ —0, -0

ew —1
w? 1

ew —11—e W

) 1
Jim e =3R-0-7 =0

CV:3R

(f) Find ¢y when T' < ©

T<O=e"—1~eY,

w2eV w?

cy ~ 3Rewew = 3Re—w

43



(g) Sketch ¢y —T

C/\J A\
3

R

-n

S
WV

(h) Classical limit

condition 69: kT > hw condition 1: kTS CAT

6.3 7.3 Work done on an ideal gas in a quasi-static adiabatic process

A thermally insulated ideal gas has a molar specific heat ¢y (at constant volume) independent of
temperature. Suppose that this gas is compressed quasi-statically from an initial macrostate, where
its volume is V; and its mean pressure is p; , to a final macrostate, where its volume is V; and its
mean pressure is py.

(a) Calculate directly the work done on the gas in this process, expressing your answer in terms
of the initial and final pressures and volumes.

(b) Express your answer to part (a) in terms of the initial and final absolute temperatures T;
and T of the gas. Show that this result would follow immediately from a consideration of the change

of internal energy of the gas.

SOLUTION

(a) Calculate work R

Q=0 W=AU =cyAT

—orT 1
AT =Ty — T, =28 2 (5.v, — 3,V
¥ nR(prf piVi)
W= ey (5, Vs — Vi) 22| Y, vy - pVi)
—CVanff p;iVi Rpff biVi
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Bi A ey St molar BIAAIAES, WURATE n o AR Adiabatic process: pV7 = p;V;' =
Vi oty =1+2"

piV;!
pv, = Vx’y
Vf Vf iV'Y
W:—/ pdV:—/ Pl gy
v; v, V7
Vi Vi
—_ _ini’Y/ VYAV = _ini’Y V—7+1
v -y + 1 Vi
— 1 Y (ot 1) _ L SATautan SAveutan
__—7+1pivi <Vf —Vi >_7_1<pivi Vi 7 =iV )
1
— vy v+ oyt
- = (pfvaf — V'V, )
cv _
= ﬁ(pfvf - piVi)
(b) Rewrite
dE = veydT
Ty
E = / veydT = vey (Ty — T;)
T;
6.4 7.4 Specific heat difference ¢, —c, of an ideal gas normal

Consider an ideal gas enclosed in a vertical cylinder closed by a piston. The piston is free to
move and supports a weight; thus the gas is always kept at the same pressure (equal to the weight
of the piston divided by its area) irrespective of its volume.

(a) If the gas is kept at a constant pressure, use (43) to calculate the heat dQ absorbed by it if
its temperature is increased by an amount d7T. Use this result to show that its molar specific heat
cp, measured at constant pressure, is related to its molar specific heat ¢y , at constant volume, by
cp =cy + R.

(b) What is the value of ¢, for a monatomic gas such as helium?

(c) Show that the ratio ¢,/cy is equal to the quantity y defined in (57). What is the value of

this ratio in the case of a monatomic ideal gas?

T
dQ = veydT + %dv (43)
The entropy change of the gas in this infinitesimal process is then, according to (32),
given by 40 p p
T v
dS = ? = VCV? =+ VR 7 (44)
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Raising both sides to the power (R/cy),we then obtain

pV7 = constant

where
R cy+R

(56)

(57)

SOLUTION
v is n in ideal gas equation

(a) Prove specific heat equation

T
dQ = nevdT + pdV = neydT + pd " EL
p

= ncydT + nRAT = n(cy + R)dT

nzl—)cp:j—g:c‘/—f—R

(b) Hecy,cp

(c) Find ratio
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6.5 7.7 Equilibrium conditions for a system of fixed volume when it is in contact

with a heat reservoir

Consider a system A whose only external parameter is its volume V which remains fixed. The
system is in contact with a heat reservoir A’ at the constant temperature 7”.
(a) Use arguments similar to those of Sec. 7.5 to show that the equilibrium of A is characterized
by the fact that the function
F=E-T'S

for this system must be a minimum. Here E is the mean energy and S the entropy of A. The function
F is called its Helmholtz free energy.

(b) Show that the Gibbs free energy (76) of a system in contact with a reservoir at constant
temperature 7" and constant pressure p’ can be expressed in terms of its Helmholtz free energy by
the relation

G=F+pV

(a) Prove equilibrium is at min F

V=C=Q=AE

S*=8+4+Y9
Q AE
r_ % _ =
AS_T T
. AE TAS — AE
AS* = AS — = 7
__F
T

S /b, F ik
Pr SR AR, RAR—PAERX

(b) Gibbs R

N

Canonical Distribution in the Classical Approximation
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o AHZ3[A] phase space : FFEEEMISCEAE AR, BEDRERR—DALT AR RS, A
cartesian multidimensional space whose axes are labeled by all the coordinates and momenta
describing a system in classical mechanics. A point in this space specifies all the coordinates

and momenta of the system.
YEFF: ndn

Fundamental assumption: An isolated system in equilibrium will be found in any of its accessible

cells with equal probability.

o Mk p(g, p)dgdp = Ce PP x dgdp

o I -fER cv =

NN

U
S

ot
e

If a system described classically is in equilibrium at the absolute temperature T, every indepen-

dent quadratic term ¢; of its energy has a mean value —{K 7 RE &
1
g =—kT
72

Maxwell 434 #JE0H (MIENE153)]) gives the mean number of molecules having a velocity
between v and v + d\ in a gas at the absolute temperature T. It is merely a special case of the
canonical distribution. IF N4

f(v)d3v o e~ (1/D)Bme? g3y

6.6 SE/NTANKT iR

FAZSI], Afap e — A A 2

AR RGRIT R TSR HekEYE

WHRT: €= L2 + ko

AR BT BE RS E = Nae = 3(Nak)T = 3RT — P oy = 3R
Hedl1: EEIERT
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The specific heat of a solid

-

e b &

1 atom 3 oscillators

Then, the motion of one atom along any one dimension
is described by a harmonic oscillator

2 2 2
Px - Py p: 1
¥ ﬂ"'zksxz fy E"‘Ekb z €, m+§kbzz
€, €y lkT—l— kT £
€y = EkT+EkT Ey 5 > € = EkT-l-EkT
Then e=€éx+6e,+e, E=E +& +& =3kT

The mean energy permole & _ 5y \r — 3p7

The molar specific heat oE
v

at constant volume

I

JEFIAMIE S AER - RoP R (Cworate B - SRR

7T

7.1 7.12 Equilibrium between phases discussed in terms of chemical potential
easy: & (U

Consider a system consisting of two phases 1 and 2 maintained at a constant temperature T
and pressure p by being in contact with a suitable reservoir. The total Gibbs free energy G of this
system at the given temperature and pressure is then a function of the number Ni of molecules in
phase 1 and the number Na of molecules in phase 2; thus G = G(N1, N2).

(a) Using very simple mathematics, show that the change AG in the free en ergy resulting from

small changes AiVi and AN2 in the number of molecules in the two phases can be written in the

form
AG = 11 ANy + 2 AN (i)
if one uses the convenient abbreviation
oG (ii)
= ii
i o,



The quantity pu; is called the chemical potential per molecule of the ith phase.

(b) Since G’ must be a minimum when the phases are in equilibrium, AG must then vanish if one
molecule of phase 1 is transferred to phase 2. Show that the relation (i) thus yields the equilibrium
condition

p = pi2 (iii)

(c) Using the relation (86), show that u; = g;, the (Gibbs free energy per molecule of phase i.

The result (iii) agrees thus with (87’)

SOLUTION

(a) G expression -
If G = (Nl,NQ) 7then dG = gij\cfile + 597]\6;2(31]\[2

oG oG

Wi=3N;

[

>

AG = 1 ANy + 12 AN,

(b) Find equation of chemical potential
Conservation of moleculars
N=N{+Nyy, AN=0=AN;+AN>, =0
G must be a minimum, AG =0
ANy = —AN,
AG = 1 ANy + 2 AN,
0= ,ulANl + 'LLQ(_ANl)

0= (1 — p2)ANy

=1 = {2

(c) Transformation

G = g1 N1 + 2 N2 = dG = g1dNy + g2dNa
0G
ON;

H1 = p2 = g1 = g2

9i = Mi =
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7.2 7.14 Refrigerators

A refrigerator is a device which extracts heat from a system A and rejects it to some other
system A’ at a higher absolute temperature. Suppose that A is a heat reservoir at the temperature
T and A’ is another reservoir at the temperature T .

(a) Show that, if 77 > T', the transfer of heat ¢ from A to A’ involves a net decrease of entropy

of the total system and is thus not realizable without auxiliary systems.

A
Temperature T”

q

A
Temperature T

g=q+w

Fig. 7.16 Schematic diagram of a refrigerator.

(b) If one wants to extract heat ¢ from A and thus reduce its entropy, one must increase the
entropy of A’ by more than a compensating amount by rejecting to it an amount of heat ¢’ greater than
q. This can be accomplished by letting some system B do an amount of work w on the refrigerator
mechanism M working in a cycle. One thus obtains the schematic diagram shown in Fig. 7.16 and
understands why kitchen refrigerators need an external source of power to make them function. Use

entropy considerations to show that

Q\‘.Q
IN
el

SOLUTION

(a) Prove not spantaneous

—q q
AEy =0 (¢—¢)+0=0
=q=q

AS* = ASy + ASy + ASy

o1



It’s cyclic, so ASy =0

/ !

. q q T -T
A = — — — =

S =g 7=

T >T=AS*<0

)

an auxiliary system is needed for entropy compersation!

(b) Prove inequality

AS +AS >0
—q
I
7 T =0

q T

7.3 7.16 Maximum work obtainable from two identical systems intrinsic

Consider two identical bodies A; and Ay , each characterized by a heat capacity C' which is
temperature-independent. The bodies are initially at temperatures 77 and T3 , respectively, where
Ty > T5. It is desired to operate an engine between A; and Ay so as to convert some of their internal
energy into work. As a result of the operation of the engine, the bodies ultimately will attain a
common final temperature 7.

(a) What is the total amount of work W done by the engine? Express your answer in terms of
C,T1,T5, and Ty.

(b) Use arguments based upon entropy considerations to derive an inequality relating T’ to the
initial temperatures 77 and T5.

(c) For given initial temperatures 77 and T5, what is the maximum amount of work obtainable

from the engine?

A
Temperature T’

]
]

A
Temperature T

|

g=q+w
Fig. 7.16 Schematic diagram of a refrigerator.
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(a) Express W

SOLUTION

W= —(q1 + q) = —C(AT + ATy)

W =0C(Ty + T3 —2Tf)

(b) Find inequal relation between T, 71,75

dg = CdT

AS =

r, T r, T

Cyclic: ASyr =0, then the total entropy is

ﬂ@_/ﬂ&ﬁ_

Ty
In =L
CnTj

AS* = AS1 + ASy + ASyy

If jf
_ In=L +1n=L
—C[n 1+n 2}—i—O

2nd law of therodynamics: AS* >0

(c) Find max W

2

Clrf>0
. T —

T2
exp <ln Tlng> > e —

T? > TvTh

T; > /TiTy

max W = [C(Tl + T — 2Tf)]

T; = /TiTy

Wmax = C(Tl =+ T2 -2 T1T2) =

93

T2
_F 5
Ty Ty —

max

C(V/T1 — T1)?




7.4 7.17 Ideal gas Carnot engine

We wish to show explicitly that it is possible to design a highly idealized engine which can, in
a cycle, extract heat q from some heat reservoir A at the absolute temperature T, reject heat q’ to
some heat reservoir A ’ at the lower absolute temperature T , and perform useful work w —q —
q’ in the process. The simplest such engine is one (first considered by Sadi Cam ot in 1824) which
operates in a quasi-static manner. The cycle consists of four steps which take the engine from its
initial macrostate a back to this state after passing through the intermediate macrostates b, c, d.
The engine consists of v moles of an ideal gas contained in a cylinder closed by a piston. The volume
of the gas is denoted by V, its mean pressure by p. The four steps of the cycle, shown in Fig. 7.17,
are then as follows:

Step 1. a — b: The engine, originally at the temperature T’ is thermally in sulated. Its volume
is now decreased slowly from its initial value Va until it reaches a value Vb where the temperature
of the engine is T.

Step 2. b — c¢: The engine is placed in thermal contact with the heat reservoir A at the
temperature T. Its volume is now slowly changed from Vb to Vc, the engine remaining at the
temperature T and absorbing some heat ¢ from A.

Step 3. ¢ — d: The engine is again thermally insulated. Its volume is now increased slowly from
V. until it reaches a value Vd where the temperature of the engine is 7".

Step 4. d — a: The engine is now placed in thermal contact with the heat reservoir A’ at the
temperature T”. Its volume is now slowly changed from Vj; back to its original value V,, the engine

remaining at the temperature 7" and rejecting some heat ¢’ to A’. Answer the following questions:

\'%4

Fig. 7.17 Operation of a Carnot engine indi-
cated on a diagram of mean pressure p versus
volume V.

(a) What is the heat g absorbed in step 27 Express your answer in terms of V4, V. and T.

(b) What is the heat ¢’ rejected in step 47 Express your answer in terms of V, V,, and T.

(c) Calculate the ratio V4 /V, in step 1 and the ratio V;/V, in step 3, and show that V;/V. n is
related to Vy/Ve.

(d) Use the preceding answer to calculate the ratio ¢/¢’ in terms of T" and T".

(e) Calculate the efficiency 7 of the engine and show that it agrees with the general result (109)

valid for any quasi-static engine.

o4



...... any engine which operates between these two reservoirs in a quasi-static manner has

the same efficiency; i.e.,

(109)

for any quasi-static engine,

SOLUTION
adiabatic compression; isothermal expansion; adiabatic expansion; isothermal compression. #i#&

- SFRAY - AR - SR

(a) Calculate heat in 2

clockwise: W < 0
Step 2: b-c isothermal expansion AU =0

ABp . =vey AT 222 0= g+ W
g=-W=—(— /chdV) - /VC VRT v — Ry
Vi v Vv v
q =vRT lngz
(b) Calculate heat in 4
Step 4: d-a isothermal expansion
ABgoa=7evAT 2222 0= g1+ W

Va Va ! Va
q:W:—/ pdV:—/ VRTdV:—VRTlan

Va Va 4 Vy
Va
"= yRT'In =
q v n v

(c) Calculate ratio relation in 1,3

Step 1: a-b adiabatic compression; Step 3: c-d adiabatic expansion

— -1
TV =TV

—1 -1
T‘/c’y—l — TlVd’}/fl - (%)7 _ <%>’Y

Ve Va
Vi %
Ve Va
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(d) q ratio

q VvRTIV./V, |T

¢ vRT'InVy/V, |T

(e) Find efficiency

W_a-d T
maximal effeciency
WA R S
T
cydIl + R7 av =0
cy dl'  dV
v — =0
R T + Vv

Tv/R)Y — constant

‘ pV7 = constant ‘

:1+£:Cv—|—R
7= cy cy
iR

1. EESEZ AS = 0 In a quasi-static adiabatic process,

over their original states, while the energies of these states are changed

2. X X, = 9
3. il

7.5 SLRLIKT R
KRS EAACIBESE: HlBE -

o EFHS = AS = 0 In a quasi-static adiabatic process, the system tends to remain distributed

over their original states, while the energies of these states are changed

I EE A

1. If A is in thermal equilibrium with C B is in thermal equilibrium with C Then A is in thermal

equilibrium with B

o6

the system tends to remain distributed




Ty =Tc&Tp =Tc = Ta =Tp (i)
1. figEsPH: ZRSE AE=0,AE=Q+ W

(0@5=23 (i) AS=0

Infinitesimal quasi-static Isolated system
process

3. T‘)O,S‘)S{)

PARATRER ] (A%) : S = klnQ & Q = ek If an isolated system is in equilibrium, the

probability of finding it in a macrostate characterized by an entropy S is given by

P x e%
IS _
$%J:a P  Qtot
A%l Pl F1 Rl
o Jufit¥): Helmholtz free energy
. AE ~T'AS + AE
AS*=AS — = T
F=E-TS
. AF
AS* = — T
o A1¥): Gibbs free energy
” / o ” /
AS* — AS — AE +p'AV _ T'AS + AE +p'AV
T T’
G=E-TS+pV
AG
AS = — T

HHEERER 7 figR
ML E g MG T FERKT G
G = Nig1 + Na2go
If the two phase coexist in equilibrium,
dG = g1dNy + g2dNa =0 Nj+ No = N(g1 —g2)dN1 =0 dNy = —dN;

o7



So for coexistence in equilibrium, ¢g; = g2

g; is also known as chemical potential g; =
w4,
Clausius-Clapeyron J5#¢
dp As dp NAs AS

dT ~ Av dT ~ NAv AV

Pl
Along the phase equilibrium curve 91 = G5
9:(T,p) = 92(T,p) p 0 <g/
So the change in g; from a>b must be Phase 1 |, 91> 9:
equal to the change in g, s
dg, = dg, a.( Phase 2
since - _  cquibeim cave
G=E—-TS+pV :
so, T
9i = Gi/N; = € —Ts; + pv;
dg; = d€; — Tds; — s;dT + pdv; + v;dp
From the fundamental thermodynamic relation
. Tds; = d€é; + pdv; TdS = @0 = dE — dw
" dg; = —s;dT + v;dp = dE — pdV

dg; = —s;dT + v;dp
Apply it to each phase
—s1dT + vidp = —sodT + vodp

So,
(s2 — 51)dT = (vg — v1)dp
153
dp _ As
dT  Aw
dp  NAs AS
dTT  NAv AV
TRAEA %

o8



Bl FEW R TR M
ATDVRHAR (RIS, TR RYRNECR 2, Rst) B

/

AS*=AS+AS - L4 9 >

T T~
¢=q-w
g, q—w
2 0
T 7

SR AR HEE SM
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