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Problem 3.18 The potential at the surface of a sphere (radius R) is given by
Vo = kcos 36,

where & is a constant. Find the potential inside and outside the sphere, as well as the surface
charge density & () on the sphere. (Assume there’s no charge inside or outside the sphere.)
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4k (38/54)

A particle of mass m whose total energy is twice its rest energy collides
with an identical particle at rest. If they stick together, what is the mass of

the resulting composite particle? What is its velocity?
1. Total energy of the moving particle:
o The total energy F is given by:

E = ymc?

1

No=ryr is the Lorentz factor.
—v C

where v =

e Given E = 2mc?, we solve for v:
1
V1—v2/c?

2 32 \/g
v = —=C :UZTC

4

2. Momentum of the moving particle:

1
=2 — :2:>1_1)2/C2:Z

e The relativistic momentum p is:

3
p:’ymv:2m~\2fc:\/§mc

15



3. Total momentum of the system before collision:

e The stationary particle has no momentum, so the total momen-
tum is:

DPtotal = \/gmc
4. Total energy of the system before collision:

« Energy of the moving particle: 2mc?

« Energy of the stationary particle: mc?

e Total energy:
Fiotal = 2mc? + me? = 3mc?

5. Mass of the composite particle:

e Using the invariant mass relation:

Etotal o 3mc?

2
Etotal = MC —— M = )

=3m

c? c

6. Velocity of the composite particle:

e Using the momentum-energy relation:

p Muv v DPtotal \/§mc
total — composite = Ucomposite = =
P P M 3m

|3

7. Mass of the composite particle: M = 3m

8. Velocity of the composite particle: veomposite = ?c

B

Problem 12.16 The twin paradox revisited. On their 21st birthday,
one twin gets on a moving sidewalk, which carries her out to star X at speed
her twin brother stays home. When the traveling twin gets to star X, she
immediately jumps onto the returning moving sidewalk and comes back to
earth, again at speed She arrives on her 39th birthday (as determined by
her watch).

16



. How old is her twin brother (who stayed at home)? (a)
. How far away is star X? (Give your answer in light years.) (b)

. What are the coordinates (z, t) of the jump (from outbound to inbound

sidewalk) in S? (c)
. What are the coordinates (z,%) of the jump in S? (d)
. What are the coordinates (Z,) of the jump in 57 (e)

. If the traveling twin wanted her watch to agree with the clock in S,
how would she have to reset it immediately after the jump? If she did
this, what would her watch read when she got home? (This wouldn’t
change her age, of course—she’s still 39—it would just make her watch

agree with the standard synchronization in S.) (f)

. If the traveling twin is asked the question, "How old is your brother
right now?”, what is the correct reply (i) just before she makes the
jump, (ii) just after she makes the jump? (Nothing dramatic happens
to her brother during the split second between (i) and (ii), of course;
what does change abruptly is his sister’s notion of what ’right now,

back home’ means.) (g)

. How many earth years does the return trip take? Add this to (ii)
from (g) to determine how old she expects him to be at their reunion.

Compare your answer to (a). (h)

17



Problem 12.16
(a) Moving clock runs slow, by a factor v = m & %. Since 18 years elapsed on the moving clock,

2 x 18 = 30 years elapsed on the stationary clock. | 51 years old.
(b) By earth clock, it took 15 years to get there, at ¢, so d = gc % 15 years = (12 light years).

(c) Et =15 years, ¢ = 12¢c }'ears.‘

(d) [£ =9 years, & = 0. | [She got on at the origin in §, and rode along with &, so she’s still at the origin. If
you doubt these values, use the Lorentz transformations, with z and ¢ from (c).]

(e) Lorentz transformations: [ &= y(z +vt) (note that v is negative, since S is going to the left).
t=7(t+ %z)

nE=3(12cyrs+ 2c- 15 yrs) = £ - Mcyrs =
i= %(15 yrs + %f; -12¢ yrs) = % (15 + "5—8} yrs = (25 + 16) yrs =

(£) Set her clock | ahead 32 years, | from 9 to 41 (£ — £). Return trip takes 9 years (moving time), so her clock

will now read years at her arrival. Note that this is %’ - 30 years—precisely what she would calculate if the
stay-at-home had been the traveler, for 30 years of his own time.

(g) ())t=9yrs,z=0. Whatist? ¢t = = + % = %‘9 = % = 5.4 years, and he started at age 21, so he's

26.4 years old. | ( Younger than the traveler (!) because to the traveler it's the stay-at-home who’s moving.)

(i) f=41yrs,z =0. Whatist? t = £ = %Atil . lg— = 24.6 years, and he started at 21, so he's

45.6 years old.

i
=

(h) It will take another of earth time for the return, so when she gets back, she will say her

twin's age is 456 + 5.4 = years—which is what we found in (a). But note that to make it work from
traveler’s point of view you must take into account the jump in perceived age of stay-at-home when she changes
coordinates from & to S.

(AT

Hwl

V2B (ZERIAE B O R )
(Textbook) Problem 1.13, 1.49, 1.53, 1.54, 1.60, 1.61, 1.62 Optional

Problems: Derive the curl V x A in cylindrical coordinates.

1.13

Problem 1.13 Let r be the separation vector from a fixed point (2, 1/, /)
to the point (z,y, z), and let z be its length. Show that

(a) V(r?) = 2r.

(b) V(1/r) = —7/r%.

(c) What is the general formula for V(r™)?

18



r= (-2 y =12 =) =Ve -+ =)+ (- )
V) =V (= 2)2 + (g = y)* + (2 = 2)?)
= (91.0,.0:)
=2 —ay—y,z—2)
=[2r]

1
v; - (am 81/7 az)

Ve =22+ (y =)+ (2 = )2

_ (_1 2(x — ) )
2@+ y—yP+ =)

1.49

(a) Let Fy = 2?2 and F, = ax + yy + 2z. Calculate the divergence and
curl of F; and F». Which one can be written as the gradient of a scalar?
Find a scalar potential that does the job. Which one can be written as the
curl of a vector? Find a suitable vector potential.

(b) Show that F3 = yzx+ zxy+xyz can be written both as the gradient
of a scalar and as the curl of a vector. Find scalar and vector potentials for

this function.

V-F1:O;V><F1:(O,—2x,0)
V- Fp=14141=3;VxF=0

19



& Fr bR, Fo REH. aTASFSH 0
V(Z5 =F —

0z¢6 =10
oo =0 &= 22247 = 0y = 222, let Oy = —2x2
0.0 = ?

¢ =2’z — 22y

VxA=F=
T gy z
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1.53

Check the divergence theorem for the function
v = 12 cos OF + 1% cos O — r? cos 0 sin ¢,

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make

sure you include the entire surface.
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Figure 1.48

dotfill [Answer: TR*/4] KMET , #Z H AR Divergence theorem:

;5 EdS:/V-EdV
54 4

o 1 a 2 9 a " 2 o 1 a 2 N
Vv = F:'E(r r? cosd) + ey (sin6r® cosg) = 7m0 9% (=r® cos@sin ¢)
= s 1 2 L. 73
= r24r cosé + rsinﬂmgr cos ¢ + rsinﬂ{ r? cosfcos¢)
rcosf . .
- [45in@ + cos ¢ — cos ¢| = 4r cosf.

w/2 n/2

R
/(4rcm9}r23in9drd9d¢=4fr3drfoosﬂsinﬂdﬂ/n‘qb
0 0 0

1 m
= (3) (5) =
Surface consists of four parts:

(1) Curved: da = R*sin@dfdé#; r = R. v-da= (R?cosf) (R?sinfdf dg) .

f(V-v) dr

n/2 n/2

fv-da:R‘!msOsinGdB!dq&:R‘(%) (g)=$

(2) Left: da=—rdrdf; ¢ =0. v-da=(r®cosfsing)(rdrdd) =0. [v-da=0.
(3) Back: da =rdrdf; ¢ =7/2. v-da= (=r? cos@sin ¢) (rdrdf) = —r3 cos @ dr dé.

R w2
fv-da: fradr/cosﬂdl?: = (éR‘) (+1) = —i—R".
0 0

(4) Bottom: da = rsin drd¢8; 8 = /2. v-da = (r?cos¢) (rdrdg).
R wf2 g
fv-da = /r"d‘r/cosq&drﬁ: ZR‘.
0 0

Totol: §v-da=7R'/4+0- 1R + 1R = 28 ¢
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1.54

Check Stokes’ theorem using the function
v = ayXx + bxy

(where a and b are constants) and the circular path of radius R, centered at

the origin in the zy plane. [Answer: TR2(b—a)] ......ccoovviiieiiiiiinin,

Problem 1.54
b4

v _. 2
Vxv=| & B% g"; =z(b-a). So [(VxvV)-da=(b-a)rR>.
ay bz O

v-dl=(ay% +bz§) - (dzk +dy¥ +dzz) = aydz + bady; 2> +y® = R? = 2zde + 2ydy =0,
sody = —(zfy)dz. So v -dl =ayde + bz(—z/y) do = | (ay® — ba®) du.
a(R?-z?)-ba?

For the “upper” semicircle, y = VR? — 22,50 v-dl = o — AT,
-R o
= aR? - (a+b)z? , Pl i & e iR £]}
[V-dl = !T}r_xz—‘h7 {aR sin (R) (a+b) 3 R? —z? + 5 sin (R) B
-R
R R e o g e ey i ey _lpae oW
= §R (a - b)sin (m/R)|+R—2R (a—b) (sin"!(=1) — sin~' (+1)) ~2R (a b)( o 2)
= %sz(b-a).

And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so
§v-dl=nR2(b—a). v

1.60

Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental in-
tegral theorems of vector calculus, it is possible to derive a number of corollaries from them.
Show that:

(@ (V) dt = §gTda. [Hint: Letv = ¢T, where ¢ is a constant, in the divergence
theorem; use the product rules.]

(b) fv(V xv)dr = —fsv x da. [Hint: Replace v by (v x ¢) in the divergence theorem.]

©) fv[Tsz +(VT) - (VU)]dr = 55,5-(TVU) - da. [Hint: Letv = TVU in the divergence
theorem. |

(d) fv(TVZU —UV?T)dt = §5(TVU —UVT)- da. [Commenr: Thisis known as Green’s
theorem; it follows from (c), which is sometimes called Green’s identity.]

(e) fs VT xda= - ﬁp T dl. [Hint: Let v = ¢T in Stokes’ theorem. ]
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Problem 1.60

(a) Divergence theorem: §v-da = [(V-v)dr. Let v = cT, where c is a constant vector. Using product
rule #5 in front cover: V.v = V+(cT) = T(V-c) +c¢-(VT). But c is constant so V-c = 0. Therefore we have:
J¢-(VT)dr = [Tc-da. Since c is constant, take it outside the integrals: ¢- [ VTdr = ¢ [Tda. But c
is any constant vector—in particular, it could be be X, or ¥, or Z—so each component of the integral on left
equals corresponding component on the right, and hence

/VTdT:/Tda. qed

(b) Let v — (v x ¢) in divergence theorem. Then [ V-(v x ¢)dr = [(v x c) - da. Product rule #6 =
Vivxe)=c (VXv)—v-(Vxc)=c-(Vxv). (Note: Vxec =0, since c is constant.) Meanwhile vector
identity (1) saysda- (v x¢c) =c-(daxv) = —c- (v xda). Thus fc-(VXVv)dr = — [c- (v x da). Take c
outside, and again let ¢ be X, ¥, Z then:

/(va)dr:—fvxd& qed

(c) Let v = TVU in divergence theorem: [ V-(I'VU)dr = [ TVU-da. Product rule #(5) = V-(T'VU) =
TV(VU) + (VU) - (VT) = TV2U + (VU) - (VT). Therefore

/(TV"’U+(VU)-(VT)) dr:/(TVU)-da. qed

(d) Rewrite (c) with T« U : [ (UV2T +(VT)-(VU)) dr = [(UVT)-da. Subtract this from (c), noting
that the (VU) - (VT) terms cancel:

_/ (TV2U - UVT) dr = f (TVU - UVT) -da. qed

(e) Stoke’s theorem: [(VXv)-da = §v-dl. Let v=cT. By Product Rule #(7): Vx(cT) = T(V xc) —
¢ x (VT) = —c x (VT) (since c is constant). Therefore, — [(c x (VT))-da = § Tc-dl. Use vector indentity
#1 to rewrite the first term (¢ x (VT))-da = c- (VT x da). So — [¢- (VT xda) = § ¢-Tdl. Pull c outside,

and let ¢ — X, ¥, and Z to prove:
fVTxda:—j(Tlﬂ. qed

1.61

Problem 1.61 The integral
a= f da (1.106)
S

is sometimes called the vector area of the surface S. If S happens to be flar, then |a| is the
ordinary (scalar) area, obviously.

(a) Find the vector area of a hemispherical bowl of radius R.
(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.60a.]
(c) Show that a is the same for all surfaces sharing the same boundary.
(d) Show that

a=%3£rxdl. (1.107)
where the integral is around the boundary line. [Hint: One way to do it is to draw the cone
subtended by the toop at the origin. Divide the conical surface up into infinitesimal triangu-

lar wedges, cach with vertex at the origin and opposite side 1, and exploit the geometrical
interpretation of the cross product (Fig. 1.8).]

(c) Show that
f{c-r)dl:axc, (1.108)

for any constant vector c¢. [Hint: let T = ¢ - r in Prob. |.60¢.]
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Problem 1.61
(a) da = R?sin @ df d¢ &. Let the surface be the northern hemisphere. The % and § components clearly integrate
to zero, and the Z component of ¥ is cos 8, so

2 - S THEA Y 5 .sin’@
a= | R°sinfcosfdfd¢z=2rR"2 sinfcosfdf = 2rR* % )
[

(b) Let T =1 in Prob. 1.60(a). Then VT =0, so § da = 0. qed.

(c) This follows from (b). For suppose a; # ag; then if you put them together to make a closed surface,
$da=a —ay #0.

(d) For one such triangle, da = %(r x dl) (since r x dl is the area of the parallelogram, and the direction is
perpendicular to the surface), so for the entire conical surface, a = %fr x dl.

(e) Let T' = ¢ - r, and use product rule #4: VT = V(c-r) = ¢ x (VXr) + (c: V)r. But Vxr = 0, and
(c-Vr=(c 2+ cy% teE)Nzk+yy =2%)=cX+c, ¥ +c, %= c. So Prob. 1.60(e) says

de]mf{cm)d]z—/(VT)xda:—/cxda:—cx/da:—cxa:axc. qed

1.62

Problem 1.62

(a) Find the divergence of the function

Y =

S

First compute it directly, as in Eq. 1.84. Test your result using the divergence theorem, as in
Eq. 1.85. Is there a delta function at the origin, as there was for #/r%7 What is the general
formula for the divergence of #"? [Answer: V - (r"E) = (n + 2)r"~! unless n = —2, in
which case it is 4783(r)]

(b) Find the curl of r"r. Test your conclusion using Prob. 1.60b. [Answer: V x (r"F) = 0]

Problem 1.62
(1)

For a sphere of radius R:
[v-da
J(V-v)dr

J(4%)- (R?sin6d8doF) = R [ sinfddi = 4z R.

R So divergence
J (&) (r*sinfdrdfdg) = (f dr) ([sin8df d¢) = 47 R. theorem checks.
o

]

Evidently there is no delta function at the origin.

i "L agigus bes 4l g 1 =
VX (") = 55 (717) = g 07) = Gl 9 <[+ 9]

(except for n = —2, for which we already know (Eq. 1.99) that the divergence is 4w6%(r)).

(2) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives
To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using

Prob. 1.60(b): If Vx(r"#) = 0, then [(VXv)dr = 0 z —f§vxda. Butv =r"f and da =
R?sinf df d¢# are both in the # directions, so v x da = 0. v/
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Hw2
Problem 1: Electric Field in Spherical Coordinates easy

Suppose the electric field in a region is given by E = kr?# in spherical
coordinates, where k is a constant. Find the charge density p(r) in this

region.

V-A (r*-A)

- r29r

SE Y, SRALGTE

p=¢eV-E=¢V -k
=€ (r2/~c7“2) = 60i Akr®
r r r
-

Problem 2: Vector Potential and Magnetic Field in Cylindrical

Coordinates easy

The vector potential in cylindrical coordinates is given by A = kr?t,

where k is a constant. Find the magnetic field B generated by this vector

potential.
KRS IR
_[10A4,  0A4] . 0A, 0A,|, 1[0 0A, | .
VXA‘La(p B az]”[az B 8r}¢ [87'(“4@_ a¢]z
aBz" 8kT2A S
B:VXA:—arqﬁ—— o ¢ =|—2kro
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Problem 3: Electric Field in the Overlapping Region of Two Spheres

Two spheres, each of radius R and carrying uniform charge densities +p
and —p, respectively, are placed so that they partially overlap. Let d be the
vector from the center of the positive sphere to the center of the negative
sphere. Show that the electric field in the region of overlap is constant, and
find its value. — PEBR{R[FNE: G 0] BE A 5855

—P

+p

FRWIAEI R WERIE, 2035 SJ AT E +o M1 —p, EA]
W ER, H d N IERGTERAR 0B G AR A R O e i . SOKAIE
I & XA L R A E /Y, R HAE

HoE, BIEEABRAREY . X TERE AT E A, R
PR mE ARSI, e AR, XA R R BRIR, R L
HHER DR AT AR AE o« i FERAR BT BRI 200, m] DA I s S0rvd
HARACIT T

TERAERIE A, RN G BB LRI » A, HHIGRTT e
[ ERIARY AT ARIERINTERE, HY% Esphere FTAZRIN N

1 (enclosed
Esphere = )
€0 T

;H\:EP Genclosed %@@E%%EWE@%%E‘: Hﬂ?%ﬁ%ﬁ%i@gﬁga L
WAERR N2 MER LB AN AR ] L
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PR, FIEMA BRI E & XK. FEARA S B PMASE (—
AR, @A), AT A B A AR ) . (R
BRI, BT PABRR BRI AR, HOR/MASE, R
{018 770 5 R iU P i BU =) 1 Y LU g #N N D R 7R A =2 A
HAL

&4, TR, SRESKEANBTEEER, HEMER:
5o 2pd
€0

Horp p AL, d 2 I AT EREAR F O B S Ay R A Lo
€0 RHETENTHELL

B, TEERXEKA, BB NEEER, I 22,

Problem 4: Electric Field, Charge Density, and Total Chargeeasy

For the electric potential

find the corresponding electric field E(r), charge density p(r), and total
charge Q.

E:—VV;,O:egV-E;Q:/pdV

1
p=¢6V - -E = AV - (e)‘r(l + r)r2>

ERA 0 BHATN 0, G2 (1) Afhik
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Problem 2.46

—Ar AYa=AP, - o=AF Py
ORI = etk (it (e Sy ol o Bl P T
ar r re r2

p=¢€ V-E=¢A {e”"‘(l + Ar) V- (;‘;) + ;Fg +V (e™(1+4 Ar))}. But V. (;’5) = 478%(r) (Eq. 1.99), and
e~ (1 + Ar)8(r) = 6%(r) (Eq. 1.88). Meanwhile,

V(e A +a) =2 (e 1+ M) =#{-Ae™ (1 + Ar) + e }A} = #(=A2re 7).

2
So 5 -V (e M1+ Ar)) = —"—:e"\’, and | p = oA [47r53(r) - ’\Te"\'] :

2 s
Q= ]pdr =epA {474' /ﬂa(r) dr — \? fe-r—4ﬂrzdr} =¢A (47\' - /\241r/ 're_’\rdr) :
o

But fuoo re=dr =, s0 Q = drepA (1 = %:) =

H— AN LT, ] B LT B T B3R

Problem 5: Magnetic Field of a Circular Current Loop

A circular loop of radius R carries a steady current I. Calculate the
magnetic field at a point on the axis of the loop, a distance z from the center

of the loop.

1o Idl x #
B0
d 4 r?
12 I IR?
B=*X i os=FZ Hol 1

4w 2 22y 2 (R2 +22)3/2

RS, HE#A WA T — A5
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-

WREIERHAREY: BS AKX

RN R METERRES, SirEEmi I, 2ORITRA T
b, HEHAO 2 BRI .

MR LI E B, @30 W] DA T B R T RS R TR R4S . R
TRFEHRRES, O R-GERRE AR S . L R-PR R E RS /)
HLLIG Tl AE 25 6] 2 5™ AR g3 dB:

1o Idl x #
dB = M0
A7 r2
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Hor po BREATEL, dl RHHIC, T 2MNABFCHE R TR R
Ao, roE MHRCEIE S .

L BeEAbR &R

BOE EA LT vy-~FIH N, ROAEE S, BRI E PR T 105l .
AT AT LT L oA, BRI 2 BORBRESs . T xiiett, wanfs
TE z-f07 ), B AL ORI B DTRAE. wy-F- T A — R X AR
AR AU R i

L V5

P —AFEE RS, B3R/ AE RS2 BoE BES PATE
— BT A TR Tk B, L A RG> ARSI R
Yo BB, Fra e RICHIEE o EATI, A B AN AR .
&, WE R RN

IR?
B.=
2 (R2 + 22)%/
Hepr R ZRTEHIRI LR, T RHR, 2 BRI,
a2

L, FeEs BB R R R L 2 BRI KNy

piol R?

B,=—
2 (R? + 22)3/2

Problem 6: Magnetic Field from a Finite Straight Current-Carrying
Wire

A straight wire of finite length L carries a steady current I. Calculate
the magnetic field at a point located a distance d directly above the center

of the wire.
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o Idl x t
A 2

dB =
4T r

FR-RARRKWE L, HIEERR [, ZORITFEATSE DI
EITHESN d B RIRES -

2.3 MWW B8 M5

50— B R — A PR VIRHE (2 - 18) KBRS -
B AR ST DL 1 AT RO 50 LQU 7 B TE S B 07 ) — B (R P
TR BT 16 P ) o R TR E B

JoNut, SRR AB WARBA T ERI - BE Lo
2
A|AQ *iﬁl 5
2 Mo (12 Tdising
B = .4,dB = i;J‘:l ?’2 .

MBS P HIEMNTR PO, 'EMEEER v L
ERONFEA, EHGAH OMEERLHE:?2
- 18 LEEH:

I = rcos{w - @#) =~ rcosd,

r, = rsin(w - @) = rsing.

g2 r, 8 1 = rycotd, B4

Al = r,d@ W2-18 XdRKE
sin’# LT
% EESRSTE ISR
Mo (2 Tsingdg  jod
== — = - . 2.27
B 4“L] ", 41'"‘0( cosd, - cosé,) { )

Ao, 6, B o BEA A, FURITBIE.
ERRNEREK, 6,=0, 6, =m, W

1 LA - R
firs
R TN L, W T 1EE, AR B AT DASE A b JR- PR R
. - R E R T T AN TT I dl FE25 [0 = AL 5
dB:
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jo Tl x
dB = —
Ar 2

Hor po ZHEAERL, dl 2T, T @A B3 TR R R
Ao, r g HRICEIES S .

L REARR SRS

o WHLRT o b, Mo =—L/2 8] o = L/2, WESBT o =0
L7y =d 4k,

o RFAVMBFIE dl, T o A6 @ 7, AT K
dxa .LH: dl == dxfco

2. W

o MIHB-F R E RIS R R Rk . BT REIEE IR »
ok

r=+\x2+d?

o /NFIC dl = dax FIEALER £ B dl x & 2

A% F = dak x <— AP )
VAT B\ Vi@ Vi &
THE RSB 25 5k

ﬂxf:——i@;—y
(22 + d2)3/2
H, w3
IB — &.I ddx

4 (22 + d2)3/2
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3. BUr it Sz
T M —L/2 3] L/2 fRY, 1538

5 Hold L/2 dx

v

4
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#
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&

W ARERL S 2 ORI, SR8

i

L2
ol x
_Md[mm¢+ﬂ]
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RADIRM, BAEERN:
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~ i \ayjEre e\ a/ipr e
H— b 15 B PRk
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mAER

WEATERR S LR By d SRR/
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St e 3 ) — SO
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Hw3

Problem 1: Prove the Mean Value Theorem for the 2D Laplace
Equation: hard

Prove that for any harmonic function ¢(x,y) that satisfies the 2D
Laplace equation V2¢ = 0, the value of ¢ at any point is equal to the

average of its values over a circle centered at that point.

Rk

2w
o :/ $dd
0

d(xo + 7rsinb, yo + rcosf) = ¢(xo, yo) + 7(Px cos O + ¢y sinh) + 0(R2)
2T
o = ¢0 + 7(¢z cos O + ¢, sin0)do
0

27
- / 6od6
0

Taylor J@FF: S5RH A 0, HFIR ¢o T,
R A ik

To prove the Mean Value Theorem for the 2D Laplace equation, we proceed

as follows:
1. Laplace Equation: In two dimensions, the Laplace equation is given
by:

O’ 0%¢
2 —_ — —_—
\4 ¢($7y) - 8562 ayg 0

1. Introduce Green’s Function: We use the Green’s function G(r, ro),

which satisfies:
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V2G(r,ry) = —6(r — 1)
In 2D, the Green’s function is:

1 1
G(r,rg) = —

n——
27 |r —rg|

1. Green’s First Identity: Applying Green’s first identity, we have:

9 9 B oG 0

Since V2¢ = 0, this simplifies to:

/1¢V2GdA;: <¢6G)ch
v av \ On

1. Left Side Simplification: Using V2G = —d(r — rg), the left side

becomes ¢(ry).

2. Boundary Integral: Since G = % In % on the boundary, the normal

derivative % = —ﬁ, and the boundary integral becomes:
oG 1
—ds=——— d
Oon BT "o P, 0%
1. Conclusion: Thus, we find that:
o) = 5= b od
= — s
0 2TR ov

This proves that the value of ¢ at rq is the average of its values on the

circle.

Problem 2: Image Charge Problem for a Point Charge Inside a
Spherical Conducting Shell:

Consider a conducting spherical shell with radius R. A point charge q is
placed inside the shell at a distance d from the center. Find the image charge

configuration and determine the potential distribution inside the shell.

................................................... BRI R B



1. Setup: Consider a spherical conducting shell with radius R, and a

point charge q located at a distance d from the center.

2. Image Charge: To satisfy the boundary condition that the potential
on the conducting shell” s surface is zero, we place an image charge
' = —q R d at a distance R?/d from the center, on the same axis as

the real charge.

3. Potential Distribution: The potential at a point r inside the shell is
given by the superposition of the potentials due to the real and image

charges:
/

q q
== =tz
=l

o(7)
where 7 = (0,0,d) and r, = (0,0, R*/d) .
1. Result: This configuration ensures that the potential on the surface of

the shell is zero and provides the correct potential inside the shell.

Problem 3: Fourier Transform of Dirac Delta Function and Heav-

iside Step Function:

Find the Fourier transforms of the Dirac delta function d(x) the Heav-

iside step function H(x).

-1 o0
=5 exp(—iwz)

—| i)
0

OEMIEEERAE, ARSI AREIELTEEMN

F—T ERTMHELK H TEEHE k TH, KRBT EHEFRER.
BT XAWTO B R AEx=0 AW AELEIEK, FET Ek=0 ALH delta ®HFH-
——GPT
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Problem 4: Potential Distribution Inside a Cube

A cube with conducting walls has one face at a constant potential 1
while all other faces are grounded (at zero potential). Find the potential

distribution inside the cube.

fiff Laplace Jyfg: 7rEAL R X xyz; JrHRIGHRRIF

, 82¢ Py
Vo= 55t g g =0
¢(967y72) = X(@)Y(y)Z(2) —

X"(x) 12 Y (y) _ 2 2"(z) 12 2

X))~ V) T M g et

X(x) = sin ("22)

= 4 Y (y) = sin (%)

2(z) = eVEFGE0 _ o~ RSz — g gy (VIR

P = i i Ay sin <nf:x> sin <$) (e\/mm/a _ ef\/mm/ﬂ

n=1m=1

|:¢(Q?,y, 0) =W,
(ﬁ(.ﬁC,jj,Z = a’) = (;5(.1? = avyvz) = gZS(CC,y = 072) = ¢($,y: CL,Z) = 0:|

Vo = i i Ay sin (?) sin (’m;ry)

n=1m=1

4V,

Apm = 02

nmm

?
4V0 sm sm( y) vnZ+m2rz/a _ —vVn2+m27z/a
YT 03)S ¢ ‘
n=1m=1
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Boundary Conditions

¢(z,y,0) = Vo, 9(x,y,2 = a) = ¢p(x = a,y,2) = p(x,y = 0,2) =

Separation of Variables Assumption

¢(z,y,2) = X(2)Y (y)Z(2)

Separated Equations

X”(:C) —k2 Y//(y) — —k2 < —_ k2 4 k2

X(@) T Y(y) vooZ(z) Tt

Solutions for X(x) and Y(y)

X (z) = sin <7%$) , Y(y) =sin (m;ry)

n, m are positive integers

Solution for Z(z)

Z(z) = Anm (eV kithiz/a _ e—v kg*’“gz/“)

Complete Solution

d(x,y, 2 2 z Ay Sin ( ) sin (m;ry> (e\/mm/a B

n=1m=1

Boundary Condition to Determine Coefficients A,

Vo= 300 Apsin () sin (MY

n=1m=1

Coefficients A,
4V

Anm = 2
nmm

Final Result

6,y 2 _4VOZZSH1

n=1m=1

nwz)
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Problem 5: Potential and Surface Charge Distribution for a Sphere

with Surface Potential

A spherical shell has a surface potential given by V(0) = cos? 6. Find
the potential distribution both inside and outside the sphere using the
method of separation of variables. Also, compute the surface charge density
on the sphere. ZZEAN1EH: VLA cos fil P

Laplace Ji#; KA ¢ — o

V2V =0
o ,0v] 1 af[. av]
ar { a] T o0 [Sm‘)ae} =0

V(r,0) = R(r)©(0)

R=Ap'+Br ) o = Py(cosf)

2 1
T:R,V:cos29:§P2+§Po
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The general solution is:

Vout (7, 0) Z (An” - )Pl cosf),

=0

where P, are the Legendre polynomials.

Inside the Sphere (r < R): The general solution is:

Vin(r,0) = i (Bn’l) Py(cos ).

=0

Boundary Conditions:
1. Continuity of potential at r = R: Vin(R, 0) = Vou (R, 0) = cos? 6.

2. Surface charge implies discontinuity in the radial derivative:

€ 8V;)ut — ¢ a‘/m
" or —R * or

=o(6).

Using cos? 6 = 2 Py(cos ) + 3 Py(cos ), we find:

2R3 1 2R3
g 1422i By = 3, Bzzi.

Ap =
0 15 3 15

Thus:

Vout (1, 0) = :ﬁ 15 3P2(cose)

Vin(r,0) = 3 + 2 T= PQ(COSQ)

The surface charge density is:

or or

r=R
Substituting the expressions for Vi and Viy:

o(0) = € <—§ - %Pg(cos 9)> .

Using Ps(cos ) = 3(3cos? 6 — 1), the result is:

o(f) = —% (54 4(3cos?0 — 1)) =

605R (3 —12cos?6).
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2R A spherical shell has a surface potential given by V' (6) = cos 26.
Find the potential distribution both inside and outside the sphere using the

method of separation of variables. Also, compute the surface charge density
on the sphere. 2 HIRBE L ... o

5. Potential and Surface Charge Distribution for a Sphere with Surface Potential V{#) = cos® ¢

1. Laplace Equation in Spherical Coordinates: The Laplace equation in spherical coordinates is:

s, 1O (00 1 af dg
Vié= Zar \" ar +:'ZsjuH(')ﬁ hm&i)l? =0

2. Separation of Variables: Assuming o(r. #) = R(r)©(#). the solutions for R(r) and ©(#) are:

R(r) = Ayt + B~ Y 0(8) = Pi(cosd)

3. Boundary Conditions: On the surface of the sphere r = R, the potential is V(#) = eos? #, which can be expanded
as:

3 2 1
cos” ) = 1}’2((::)5 0) + ?H,((:us )

4. Solution for Potential: - Inside the sphere:

) 1 2 2 )
Oin(r,0) = 3t imi”z((zus &)
- Outside the sphere:
i 1R 2R
bout (1,8) = 2 — + 2 Pa(cosd)

5. Surface Charge Distribution: The surface charge density is given by:

Do Oia
ol6) = 7('[]( ar ar )':n

This results in:

2
alfl) = 7(”F cosfl

Problem 6: Dipole Moment of a Sphere with Surface Charge Den-
sity:

A spherical shell of radius R has a surface charge density o(6) = o cos .

Find the dipole moment of the system.

o — p Z“H4Eli BT
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p= /af’dS

p. = R? /(ao cos 0) cos 0 sin 0dOd o
T 2w 1
= 00R3/ dqb/ cos cos 0 sin 0d0 = oo R> - 277/ uw?du
0 0 —1
4

= gRSUO

Hw4
Problem 1: Electric Dipole Moment of a Charge Configuration

Consider a system where four point charges are placed at the vertices
of a cube. The charges are q1l = +e, q2 = —2e, q3 = +e, and q4 = —e, with
a side length of a. Calculate the electric dipole moment p of this system,

and analyze the direction of the dipole moment.

WG ABIA] RE AN e 38
P=) 41
J

Problem 2: Magnetic Dipole Moment of a Surface Current on a

Sphere

A spherical conductor has a surface current density that varies with
latitude angle . The current density is given by K () = Kgsin?(0), where
Ky is the maximum current density at the equator, and 6 is the latitude
angle. Calculate the magnetic dipole moment m of this spherical conductor.
[Hint: Use the formula m = % fS r x KdS and exploit the spherical symmetry

to simplify the computation.]

G AN R A
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YL sind R X3 (B E S A5 TH)
= sin? 917“3K0 L= §W2TKOE
2 8

T e
dS = r?sin 0dAde

m—l/erdS
2 Js

1 2 T 1 4
= 3K, / do / sin® 0d = =r3Ky2m—
2 0 0 2 3
4
= 1Koz
3

Problem 3: Energy Stored in a Spherical Capacitor

Consider a spherical capacitor consisting of two concentric spherical
conducting shells. The inner shell has radius R; and the outer shell has
radius Rs. The space between the shells is filled with a dielectric of constant
€. The potential difference between the shells is V .

(a) Derive the expression for the capacitance C of this spherical capac-
itor.

(b) Calculate the energy stored in the capacitor using the formula W =
cve,

(c) Verify the result by calculating the energy stored in the electric field

coér

using the energy density w = <4 E?

HFHIA | ARIRER

Q Q 47T60
C= vV~ (R 5 1 1
Jr Q/1meor R
_ |4 RiRy
= 7reoR2 "R
1 1 R Ry
W =-CV?= Zdreg——=V?
2CV 5 weoRQ_Rlv
RiRy
=|2megV2—"
TEQ R2 — Rl




Q? 1 1 1, 5
= — —— | =-CV
8mereg \R1  Rs

Problem 4: Dielectric Sphere in a Uniform External Electric Field

Consider a dielectric sphere of radius R and dielectric constant ¢,
placed in a uniform external electric field Ey. The external field is along
the z-axis.

(a) Solve for the electric potential both inside and outside the dielectric
sphere.

(b) Calculate the induced dipole moment of the sphere.

FIE—ERN R, NMHREECH o MENTER, BT M55
Eo , ShEIAHT 2z BT . SRAR:

L BRINFIBRAM R
2. VT ERBRI B AR

o, RS g, PR AT AGE AR T BRI 5 R koK
LT

(a) LI

TERRGN v > R XIS, SRR AR . T BROGAR I, SN
TPAS

A
Vout (1) = —FEgrcosf + .

Hrp Eo ANBRAR RN, A ZEE, &EE A F A rRE . 15
BRI r = R AL, ZORWBAEZSNE, Hith:

Vout (1) = Vin(R)
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RIS r < R IXI, d T ERAZ R T, PRI TR

Vi =0

R, HREFEBRN N :

Vin(r) = Brcos#6

HAF M Vin(R) = Vour (R) MIHIARYESESMF (BI E = -VV &
FUHEIALTESE ), FATRTIAKINEEC A F1 B M. %, B2 BRNAIERSMY R
Hh:

3e
Vin(r) = - +TQE0T cos 6
EoR3(ep — 1)
Vout (r) = —Egr cos 6 + —Q(ET T+ 2)2

(b) JERY BN
JEN AR AR AT DASE 1 Bk LS O AR AL T AR 3 . BRI AR A -

P=c¢y(e, — 1)E

AT ERAGRSFRIE, WAL SRR AT 2 BT, R AR -

4
p= /PdV = gﬂRgeo(er —1)Ey

PRI, RN AR -

4
p= gTrR?’eo(er - 1)Ep
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Problem 1: Magnetic Flux and Induced EMF in a Rectangular
Loop Near a Long Straight Current-Carrying Wire

A rectangular loop of wire with side lengths a and b lies on a table, with
the side of length a parallel to a very long straight wire carrying a current I.
The closest side of the loop is a distance s from the wire. Find the magnetic
flux through the loop. If the loop is pulled away from the wire at a constant
speed v, find the induced emf in the loop and the direction of the induced

current.

b

46



wl

- 27s
,UI s—l—bl
®— | BdS = = -
/dS %/S " (bas)
_/LI s+b

In(

27 S

)

oAb prd st
dt 2xdt s
ulb?v

= 27s(s + b)

)

Problem 2: Mutual Inductance of a Small Loop Above a Large
Loop

A small loop of wire with radius a is positioned a distance z above the
center of a large loop with radius b. The planes of the two loops are parallel
and perpendicular to their common axis. Given that the field of the large
loop can be treated as nearly constant over the small loop, calculate the

mutual inductance of this configuration.

polmab?

M= OO
2(b% + 22)2

Problem 3: RLC Circuit

Consider an LRC circuit containing an inductor L, a resistor R, and a
capacitor C. Derive the differential equation describing the voltage across
the capacitor as a function of time, and solve for the voltage V' (¢) across the

capacitor if the initial charge is Q.
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W V() =M, RAFTFEHAE TR
LCN + RCA+1=0

iR HH AR HEAR ¢

\_ “RE VR -4LJC
B 2L
oh =FEOLIIE
Lot (R? >4L/C): V(t) = AeM! + Bet2t, A\, ALl

2. IGFHIE (R2=4L/C): V(1) = (A+ Bt)eM, A= -L

R

3. K (R? < 4L/C): V(1) = e 2" (Acos(wt) + Bsin(wt)), w =
1 R2
LC ~— 4L?

Problem 4: Poynting Vector in a Vibrating Parallel Plate Capac-

itor

A parallel plate capacitor is charged to a constant charge ), with the
separation between plates varying as d(t) = dop + wsin(et), where w —
do. Using the time-varying electric field, derive the time-averaged Poynting
vector S in the region between the plates. Analyze how the energy transfer
rate changes with the frequency w and amplitude J.

B Q?we
2me AZ¢

(S) =0

coset

While the average power flow is zero, the peak rate of energy transfer
increases with both the frequency and the amplitude. Wth plate oscilla-
tions,indicating stronger instantahaous energy flow betwen the plates with

higher € and w
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Problem 5: Reflection and Transmission of a Plane Wave on a

Dielectric Film

Derive the reflection and transmission coeffcients for a monochromatic
plane wave normally incident on a thin film of thickness d, dielectric con-
stant 0, and magnetic permeability p. Consider both dielectric and magnetic
properties and discuss the conditions for constructive and destructive inter-

ference in the reflected and transmitted waves.
A .
=2nm,d = n— constructive
1 A .
d=02n+1)md=(n+ 5) §destruct1ve

BABW A B = Eoe't1==eD A TRBHECH (e, ) WML PIAY 12
BN Ep = Eretthezet) 4 Eze_z(k” WO WSS HCR (eo, p2) BT A
E, = Ere'ks=l) EUIARBHON (€3, u3) ki = w /i€, i=1,2,3

o FGME L AE 2 =0, IR S

1
Eoy+E,=E+E;,, —(Ey—FE,)= (E1 E»).
H1 H2

o KM 2 FE 2 =d, WML

. . . 1 . . 1 .
Elezkgd + E2e—zk2d — Evtezk:;:,d7 7(Elezk2d _ E2e—zk2d) _ 7Etezk3d‘

H2 13
FROT RELAF I ST AR r MBS AR AR $tS:
_ (L= 20)(Zs + Zye ) 27575
T (Zy+ Z1)(Z3 + Zoe~2k2d)’ T (Zy + 7)) (Zg 4 Zye~2ik2d)’
Zi= M =123
€
S A i 3
2 t*Zs
R= |T‘ 9 T= .
Z1



T HRER d 5IRMNHNZE Ad = 2kod « HHETH (35
RAF) b AG = 2mm, m € Z WAHETI (BN Al A =
2m+1)mr, meZ

2024 WK
L [ff] 5] HREATRE KRBT
2. (Rl BE] BRFCC MG p = po(1 — 7) KLY
3. BB T
4. S

R I
F
S

5. [ve ] B e O Y R Ak P V) R L 3 4
6. MIXFIEM 0.6¢ B 12 YoAF s 1A

BV T (AT Py s 37 S 75
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